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PREFACE 

When I acquired the London ATLAS on the 30th 

September 1972, I felt that it would be a pity for this 

machine to die without its story being told and recorded 

for history. 

But which story? The story as seen through the eyes 

of Ferranti who initiated its design and development in 

conjunction with the Manchester University, or the story 

of the public relations men from International Computers 

Limited, who by now were ostensibly responsible for the 

machine, although, in fact, they had had little or 

nothing to do with its conception, or the story written 

by the newspaper men from official handouts or backroom 

gossip? 

In fact, there was little or no newspaper story of 

the death of the London ATLAS. It merited a very short 

paragraph in one or two of the technical journals, but 

otherwise, like the old soldier, it simply faded away. 

I decided, therefore, to invite a young man who had 

used the machine fairly extensively and who had access 

to other people who had had intimate relations with the 

machine to write the tale for me. 

His terms of reference were to describe in what way 

ATLAS differed from other computers and, as far as 

possible, to give his judgment on how it measured up to 

the abilities claimed for it and in what way it might 

have achieved better-than-anticipated performance, and 

how it high-lighted unusual circumstances. 

The result has been this book which gives a factual 

and a reasonably unbiased view of the computer. It has 

turned out to be a very good text book, not only in the 

sense of the technicalities it high-lights, but also in 

the hidden lessons behind the events which occurred. 

The development of ATLAS, in my opinion, was the peak 

of the exploitation of British computer development. 
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This photograph shows the main upstairs computer room where 

the actual work was done.  The spiral stair case described 

by the author was in the adjoining left-hand small room 
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Immediately after that peak the end of the British 

computer industry was in sight despite what may be 

rumoured in the market place of the wares to come. 

Some of these later developments have made their 

appearance but have not made any real impact, and the 

moral of the whole of the last fifteen to twenty years 

of British computer activity undoubtedly is that the 

ideas and ingenuity were there, but the backbone and 

courage to see things through were lacking in those who 

had the authority. 

Richard Hugh Williams 

Managing Director 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer Consultants (International) Ltd., 

G.P.O. Box 8,  

Llandudno, Wales.       March, 1973. 
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The author, who is single, was born in 1949 at South 

Shields, County Durham.  

He studied at the Grammar School there and went up to 

Royal Holloway College, University of London, to read 

Mathematics and Computer Science.  

During 1971-72 he attended the University of London 

Institute of Computer Science as an M.Sc. student. He is 

presently engaged in research in computer operating 

systems. 

He was first introduced to computers while at school 

where he was able to use the Pegasus computer which had 

been given to the school by a large insurance company. 

This unusual fact probably accounts for his early 

interest in electronic computers. 

His hobbies include music of all types — something 

that seems common amongst many computer people - and he 

is a keen organist, being a joint holder of the World 

Harmonium Playing record. 

Although his family are all interested in music, 

there are no other scientists amongst them. 
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FOREWORD 

 

This short book outlines the history of the London 

University ATLAS and gives an informal description of 

the way in which the machine operated. The contents of 

the book should be regarded as an overview of the entire 

ATLAS system. The author did not, himself, ever 

contribute to this great work, but asks only that the 

text be treated as a report on the great achievements of 

others.  

The author wishes to thank the many people who were 

concerned with the London ATLAS for their advice and 

memories.  

The helpful advice of Professor Buckingham and 

Professor Howarth of the University of London Institute 

of Computer Science is particularly acknowledged. 

lain Stinson, M.Sc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47 Roman Road, 

South Shields, 

Co. Durham.       March, l973 
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INTRODUCTION 

At the end of September 1972, the University of 

London ATLAS 1 Computer was taken out of service to be 

sold for scrap. This was rather a sad occasion for all 

those who had operated and used ATLAS, but this day also 

marked the end of the ATLAS era, the beginning of which 

made a very important impact on the computing world, 

which impact is still important today. 

The ATLAS computer was the result of many years of 

co-operation between the University of Manchester and 

Ferranti Limited. This co-operation was begun with the 

“Manchester Universal Computer” marketed by Ferranti as 

the “Ferranti Mark 1 Electronic Digital Computer”. This 

machine was built on a design developed by Professor 

Williams and Professor Kilburn at Manchester, and used 

cathode ray tubes for high speed storage backed by a 

magnetic drum store. The Ferranti Mercury Computer was 

also developed jointly with the University of 

Manchester. Mercury was, in its time, a highly advanced 

computer having both drum and magnetic core stores. 

ATLAS must be seen as an example of very deep 

collaboration between industry and an academic 

institution, the resulting design being extremely 

advanced and sophisticated. 

The ideas pioneered in ATLAS included ‘the one-level 

store’, extracodes, a rudimentary instruction pipeline 

and a very sophisticated operating system (known as “the 

Supervisor”), which drove the system with a minimum of 

human intervention. 

This book is divided into two basic parts: the first 

part gives a potted history of the early days of the 

ATLAS at the University of London and the second 

outlines, in an informal way, some of the distinctive 

features of the ATLAS computer system. 
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Diagram 1: The University of London Atlas Computer System 
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THE LONDON ATLAS 

 

The University of London ordered its ATLAS computing 

system from Ferranti Limited to replace their overworked 

Mercury machine in August 1961. ATLAS was, at that time, 

the largest and most powerful system on offer in Great 

Britain. The initial order consisted of :- 

 the central computer  

 the fixed store  

 the working store  

 a 16K core-store with co-ordinator  

 four magnetic drums with co-ordinator  

 eight magnetic tape decks with co-ordinator  

 four paper tape readers, three punches, two 

teleprinters, two card readers, one card punch, two 

Anelex line printers  

 and peripheral co-ordinator  

The total value of the system ordered was of the 

order of three quarters of a million pounds. The total 

cost was met from four sources: the University Grants 

Committee who gave a grant of £50,000 towards the cost, 

the British Petroleum Company who made a substantial 

contribution to the capital cost in exchange for about 

one quarter of the available machine time, the 

University Funds and from a loan made to the University. 

At this time the University set up a company known as 

Computors (Bloomsbury) Ltd. (now known as London 

University Computing Services), and it was the intention 

that this venture would provide a general computing 

service on ATLAS for commerce and industry in order to 

try to recover the debt incurred by the purchase of the 

machine and to contribute to the high cost of running 

such a machine. A body known as the “Atlas Computing 

Services” was also established to be responsible for the 

operation of ATLAS and its ancillary equipment. The 

University of London Computer Unit (which became the 

Institute of Computer Science 
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in March 1964) which had operated the University’s 

Mercury computer was to become responsible for research 

into computer science, teaching, giving advice on 

programming techniques and channelling the University 

jobs to ATLAS. So the order was placed, the 

administrative structure prepared and a period of 

waiting with trepidation for and in anticipation of the 

future began. 

The Manchester ATLAS computer came into use (without 

drums) in January 1963 and gradually a service developed 

on the machine there. A courier service was operated 

from London to the Manchester computer to frequent 

programmers in London with their new servant (master?). 

During August 1963, the London ATLAS was seen ‘in 

action’ at the West Gorton factory with a program that 

used four paper tape readers, two paper tape punches and 

two line printers at the same time. The official ‘switch 

off’ date at the factory was to be the end of September, 

but this was delayed at the recommendation of Ferranti 

to allow further commissioning to be undertaken. 

The building to house the London ATLAS had been 

completed in July 1963 and men from Ferranti were 

engaged in laying wiring ducts and cables since then. 

This building was a two-storey unit, the top floor was 

to house the computer’s peripherals and the basement, 

the central computer, stores, drums, co-ordinators, 

engineer’s console and power regulators. The reader must 

remember that because ATLAS was built using discrete 

components the machine itself was very large and 

demanded high power levels. Of special interest must be 

the spiral staircase that connected the two levels of 

this building - this surely must have been the only 

computer room to boast its own spiral staircase.  

Before ATLAS was delivered to London a transformation 

took place: the computer interests of Ferranti Limited 

became part of International Computers and Tabulators 

Limited (which is now International Computers Limited). 

This involved a great deal of extra work to be carried 

out on ATLAS. The names on all the cabinets had to be 

changed from “Ferranti” to “I.C.T.”. 

At the end of October 1963 the delivery of the London 

ATLAS began. A crane was moved into position and the 

motor alternators (which provided the power at a more 
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suitable frequency and voltage for various parts of the 

machine) weighing between three and four tons were 

lowered into their new homes under the supervision of 

I.C.T. engineers. The computer itself arrived in the 

middle of November together with the consoles, fixed 

store, working store, some peripherals and the 

peripheral co-ordinator. 

A week later, more of the machine arrived including 

the core store, store co-ordinator, line printers and 

magnetic tape decks. Various delays seemed to have 

occurred especially with delivery of the four magnetic 

drums which were essential to the system. 

By January 1964, the commissioning of the computer on 

the site had begun: this was to be a long and somewhat 

tedious process for all concerned. An extension to the 

original order had been made in 1965 to include a 

further 16K of core store and a new store co-ordinator 

and these were to be effected at the end of 1964. 

On the 11th May 1964, the computer was handed over 

for a shift per day. 

During the first week of this regular access to the 

machine, it was promptly handed back to the I.C.T. 

engineers as it did not appear reliable enough for any 

serious work to be carried out on it. Gradually this 

situation did improve as the hardware and software 

shortcomings were corrected and small quantities of work 

was processed.  

On June 4th 1964, Her Majesty Queen Elizabeth, the 

Queen Mother, visited the Institute of Computer Science 

and the Atlas Computing Service in her official capacity 

as Chancellor of the University. During this visit Her 

Majesty was shown around the ATLAS installation and two 

demonstration programs were run on the ATLAS computer. 

One program was a concordance program for St. Mark’s 

Gospel, and the second a program that printed anagrams 

of Clarence House, culminating in a line—drawing of 

Clarence House itself. 

By the end of September 1964 the service provided on 

the machine was becoming more acceptable. The lack of 

full; developed software, however, was causing some 

concern. In 
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October, the computer was shut down to allow the 

extensions to the core store to be made. (During this 

closed period some University work was carried out on 

the Manchester ATLAS.) Then the London ATLAS was back 

‘on the air’ again, most of the available time was given 

over to testing the machine’s performance. At this time 

B.P.’s test program was getting runs of between four and 

five hours, but the magnetic tape system appeared to be 

falling short of its expected performance. By February 

1965, B.P. were running 72-hour test sessions with only 

occasional trouble from core store parities — a problem 

that was to remain with the machine throughout its life. 

In March of 1965, the system seemed to be ‘coming out 

of the wood’ and developing into a viable service. 

During April 1965, two thousand jobs were run on the 

machine in one week and gradually this figure rose to 

around three thousand eight hundred jobs per week in 

March 1966. 

Further enhancements were made to the system in the 

form of two IBM compatible magnetic tape decks. These 

were brought into service around April 1966, so allowing 

ATLAS to read and write IBM magnetic tapes. 

During its long life, the London ATLAS ran many 

thousands of jobs, not, however, without problems. 

Besides a certain degree of difficulty over 

administration of machine time, two main problems 

emerged out of the hardware. The most serious of these 

was the problem with the 1” magnetic tape system which 

never achieved its expected performance, and since this 

part of the hardware was of a very high degree of 

importance to the system as a whole, the performance of 

ATLAS suffered. There were also problems with the core 

store units, though these were far less serious (and 

less frequent) than the magnetic tape problems. 

The London ATLAS was switched off for the last time 

on the 30th of September 1972 and scrapped. Parts of the 

computer were, however, being sent to museums as 

exhibits for technological sections. 

The University of London replaced the ATLAS with two 
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CDC machines, a CDC 6600 and a CDC 6400, and these were 

gradually brought into service around 1970 — 1971. 

London University Computing Services were allowed to 

buy a CDC 6500 computer and still continue to provide an 

extremely high quality commercial computing service. 
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AN INFORMAL DESCRIPTION OF THE ATLAS COMPUTER 

 

This section of the book gives an informal 

description of the ATLAS computer system: both hardware 

and software are considered at the same time as the 

ATLAS system depended on both of these. The first few 

parts of this section provide an introduction to the 

operation of any computer system and various concepts, 

essential to the description of ATLAS, introduced. The 

later parts of this section give descriptions of the 

ATLAS system and include descriptions of the ‘one—level 

store’, the central processing unit (the mill) and of 

some of the peripherals on the machine. 

How the user used ATLAS is described in a later 

chapter.  

A description of some of the software that was 

generally available on ATLAS is also given. 

Computers and Computing 

Basically, all computers can be considered in terms 

of a simple “model” machine which has five basic units. 

Diagram 2 outlines the structure of such a “model” 

computer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This was the main control desk in the lower room.  There 

was intercommunication between this control desk and the 

other computer locations.  The control desk was donated to 

the South Kensington Science Museum 
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Diagram 2: The Model Computer 
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In the early days of computing, the typical machine 

could easily be completely classified in terms-of this 

model (Pegasus, for example). Let us summarize the uses 

of each of the basic five units in turn. 

The STORE UNIT holds all the information that is 

going to be used. Most usually, this information is held 

as a pattern of binary digits, the pattern being deduced 

for the information by some mapping function, arithmetic 

or otherwise. The store unit itself is divided up into 

individual store cells, each of which may hold a unit of 

information. Each store cell has associated with it an 

identifier, known as its ‘address’, and this is used to 

reference that store cell. Usually the non-negative 

integers are used for addresses with cells i and i + 1 

being adjacent.  

The MILL is the part of the machine where all the 

computations are carried out. Very often this unit has 

associated with it a set of store cells used to hold 

results and operands for the calculation: these are 

known as ‘registers’ or as ‘accumulators’ The mill will 

usually have the mechanism to carry operations such as 

addition, subtraction, multiplication, division, 

shifting, logical operations, loading and storing 

registers, testing etc. 

The CONTROL UNIT is the most important part of all in 

any computer system. It is, in the same sense as the 

human brain, the nerve centre of the whole machine. 

Conceptually at least, this unit has inside it two 

special cells known as the “program counter” and the 

“order register”. The program counter holds the address 

of the store cell which contains the next order to be 

obeyed, while the order register holds the order 

currently being carried out. 

Control is responsible for organising and initiating 

the execution of stored program by the machine and it 

does this by following a “built-in” procedure usually 

known as “the execution cycle”. On some modern micro-

program controlled computers, this “execution cycle” is 

a micro-program in the micro-program control store. 

Basically, the “execution cycle” would operate as 

follows:— 



19. 

1. Get a copy of the store cell whose address is in the 
program counter and place this in the order register. 

2. Add one to the value in the program counter cell. 

3. Decode the order in the order register and send the 
control pulses to the other parts of the system to 

carry out the order specified. 

4. When the order has been obeyed, return to the first 
part of this routine if the order in the order 

register is not a STOP order. 

In many machines the execution cycle is much more 

complex than this, but the added complications are only 

due to additional features that exist on such machines. 

The INPUT DEVICE on early machines, and on this 

simple model, only transfers single characters from the 

input media to a store cell. The OUTPUT DEVICE is 

exactly similar, taking a single character from a store 

cell and putting this out. 
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The power supply cabinets were over 30 feet in length and 

occupied one complete wall of the downstairs room 

These motor alternators, of which there were three, supplied the 

power to the computer.  One set was a stand-by.  There was a 

separate small set supplying 80 cycle current to drive the four 

magnetic drums. 
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FASTER AND FASTER 

 

As technology developed computers became faster and 

faster, and certain problems which were hidden by the 

slow speed of the earlier machines became more apparent. 

The most serious problem was the large amount of time 

lost in waiting for Input-Output operations to be 

performed. In a large data processing system, for 

example, it was found that the very expensive computer 

was spending a lot of its time waiting for input and 

output to be performed by comparatively slow peripheral 

units. Thus, if the machine was next to obey an order of 

the form 

“read a character from the paper tape reader”  

it would, following its execution cycle load the order 

register with this order, increment the program counter, 

then obey the order in the order register. This would 

involve:— 

sending a signal to the paper tape reader to get the 

next character, then waiting while the tape reader 

moved the tape along, read the next character, put it 

into the store and finally sent a message to control 

saying ‘finished’. 

Control could then proceed with its execution cycle. A 

lengthy process! is the speed of the computer’s 

electronics increased, it became more apparent that a 

lot of this time was being spent waiting for very slow 

mechanical devices to do their tasks. (“very slow” in 

fact should be regarded as comparative to the speed of 

the electronics of the computer). 

Economically, running a highly expensive machine like 

this was disastrous as for much of the day the expensive 

electronic part of the machine was sitting idle. 

Several methods were considered to try and solve this 

problem and reduce the amount of time spent waiting by 

the computer. It was observed that by using high speed 

peripherals such as magnetic tape units which could 

supply more information at a higher rate, that the 
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amount of time spent waiting was dramatically reduced. 

It was this fact that inspired the famous IBM FORTRAN 

MONITOR SYSTEM. This system replaced all the slow 

peripherals, such as paper tape, punched cards, line 

printers on the main computer with the faster magnetic 

tape peripherals. A much smaller (and cheaper) computer 

was then installed and all the slow peripherals were 

connected to this machine, together with some magnetic 

tape decks. The information was then input from the slow 

peripherals to the small computer which output the 

information onto magnetic tape. 

The magnetic tape was then transferred to the main 

computer which took all its input from this tape. A 

similar method was used for output, the main computer 

outputting to magnetic tape and the smaller machine 

being used to convert this to hard copy. The large 

machine then spent much less time waiting around for 

input, since magnetic tape was much faster than any slow 

peripheral and only a small, much cheaper, machine was 

used to drive the slow devices — far more economical. 

The next improvement in the use of machine was due to 

the invention of the CHANNNEL. Even with magnetic tape 

being the input/output media, the main computer still 

had to wait while the transfer of data took place. The 

CHANNEL, however, allowed the peripheral device 

connected to transfer its data autonomously into the 

store leaving the main computer free to perform another 

task. The completion of the transfer was indicated by 

the CHANNEL setting a flag which the main computer could 

be programmed to interrogate. Thus a fragment of program 

for this sort of system could be: 

 

START I — 0  CHANNEL 1 

— 

— 

— 

Label 1. 

other processing 

— 

— 

IF CHANNEL 1 NOT FINISHED JUMP TO LABEL 1. 

— 

— 

— 
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This allowed the main computer to carry out some task 

while the transfer was being undertaken. However, it did 

mean that programs had to be written in such a way that 

they asked for their input well in advance of using it 

and did not use the input until the ‘transfer complete 

flag’ had been set by the channel. This placed quite a 

large responsibility on the programmer, making much of 

his work tedious. 

The invention (or perhaps discovery is rather more 

accurate) of the INTERRUPT helped to make the use of 

channels easier. An interrupt is best thought of as a 

break in the execution of a routine in such a way that 

control is passed to some other routine (known as the 

Interrupt Service Routine) which can take the necessary 

action and then, perhaps, restore control to obeying the 

interrupted routine, so that it could continue execution 

as if nothing had happened. Thus when a CHANNEL had 

completed its transfer it would set its transfer 

complete flag but instead of waiting for this to be 

examined, the setting of this would cause an interrupt 

to occur. Control could then be transferred to a routine 

to deal with the end of the transfer, then return 

control to the point of interruption. 

While this helps to make programming more simple it 

does mean that the programmer still must request his 

input well in advance, so that it will be input and 

present before he tries to use it. This means that he 

must either still examine a flag to check that his input 

is present or he must issue his read request and wait 

until the input of his data is complete. Now, the whole 

point of this sophistication was to obtain better 

utilisation of the main computer, so the idea of sharing 

the main computer between two (or more) programs 

developed. 
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These show two more views of the cabinets containing the logic 

circuitry and the control circuitry in the lower room. 



25. 

MULTI -PROGRAMMING 

 

In principle, the idea of multi-programming a single 

computer with several different programs is fairly 

simple: each program runs in turn until it is unable to 

do so any longer (i.e. waiting for input or some other 

event), so then another program is allowed to use the 

central machine until the input operation is completed, 

then the first program is allowed to continue again. 

Obviously, there must be some controlling program which 

arranges the swapping of programs: this program is 

usually known as the monitor program, executive program 

or operating system. 

Monitor programs actually started their development 

as a set of useful routines to aid programming. With the 

advent of interrupts their role became far more 

important as there had to be some reliable controlling 

routine to ensure the smooth operation of programs. The 

early monitor routines provided easy input-output 

facilities, allowing the ordinary programmer to be 

unaware of the problems of waiting for input, and 

observing special flags. As computers evolved, so did 

operating systems — they began to deal with certain 

error conditions signalled to them by the hardware via 

an interrupt, for example, divide by zero errors, etc.  

One of the most important of the early monitor 

systems was the Ferranti Orion “Time-sharing System”. 

From the sales description of ORION, we quote:  

“The time—sharing system ensures that:—  

a) the computer is always doing useful work  

b) peripheral devices are always kept working at their 
full speed  

Every time that a peripheral transfer is finished, and 

every time the computer attempts to refer to data 

involved in an uncompleted transfer or to any 

equipment involved in such a transfer, then the time—

sharing system processes the programme (sic) 

priorities in the store of the machine and decides 
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whether to continue the operation of the present 

programme or to switch to another programme. 

In general, the computer will switch to the programme of 

the first priority which is not waiting for the 

completion of a peripheral transfer.” 

“When Orion reaches the end of a problem or a batch of 

data, it will not stop as previous computers would have 

done. In place of a stop order there is an intentional 

entry to the ‘Monitor Routine’. The ‘Monitor Routine’ 

will carry out appropriate changes to the programme 

priority list, and continue with the remaining 

programmes or read in another.” 

“The priority-processing is fully automatic, as are the 

arrangements for ensuring that programmes do not 

interfere with one another. The programmer does not have 

to concern himself with these matters when writing his 

programme.” 
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The magnetic tapes were housed in a separate room adjoining the 

main upstairs computer room. 

Another view of the computer room with one of the Anelex printers, 

the magnetic tape in the back ground, and card readers and punches 

to the left 
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VIRTUAL MACHINES 

 

By now it should be becoming clear that there are two 

main directions in which computers develop: along the 

lines of better hardware and along the lines of better 

software (programs). These two, are very much inter-

related. We observe that “The programmer does not have 

to concern himself....”. There is now this “helping 

hand’ between the real machine (the hardware) and the 

machine for which the user writes his programs, the 

“helping hand” being the operating system. 

In describing any post ORION computer one cannot 

really separate the hardware and its operating system, 

the two are ‘for better or worse’ married together to 

provide the “virtual computer” that the user sees. How 

different this virtual machine is from the real machine 

(i.e. hardware alone) depends largely upon the “System” 

(i.e. hardware plus Operating System). We may consider 

the virtual machine in terms of the simple model set out 

earlier: every virtual machine will have its store, 

mill, input device, output device and control unit. 

Several virtual machines may exist and share the same 

real machine at the same time, but obviously there are 

problems involved in this sharing. 

As we proceed to examine the ATLAS system we will do 

well to keep these early ideas in mind, observing the 

way in which both the hardware and software come 

together to provide the user’s virtual machine. 
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THE STORE OF ATLAS 1 

 

Just as in the model computer described previously, 

on ATLAS the user saw a very large store built out of 

store cells, most of which he could use, but parts of 

which he could not use. 

Most British computers before ATLAS only possessed a 

fairly small store unit which could hold between 55 

(Pegasus) and 4096 (Orion) words of information. It was 

from this store that all the orders were obeyed and 

where all the datum values had to be held for a 

computation. For most purposes this store was far too 

small so an additional unit, known as the “backing of 

store” was added to the system. 

The BACKING STORE could really be considered as an 

Input/output organ, its function in life being to 

provide supplementary storage space for data and 

program. In real computers this device is most 

frequently a magnetic drum or disc and information is 

transferred from the store onto the backing store and 

from the backing store into the main store. 

The purpose of the backing store unit is to allow 

programs which will not fit into the main store alone to 

be run on the computer. The program has to be written in 

such a way as to need only part of its data or code, or 

parts of both, in the main store at any time. Programmed 

orders are explicitly written to transfer routines and 

data between the main store and backing store: these 

techniques are known as “overlaying” 

It should be remembered that orders are only obeyed 

from, and data operated upon, from the main store and if 

anything held in the backing store is needed it must 

first be transferred to the main store. 

Machines which had these two stores, a main store (or 

immediate access store) and a backing store, were said 

to possess a “two-level store”; the user saw two 

distinct types of storage, one was immediately 

accessible, the other having a latency time associated 

with it, and the user had to wait until information was 

transferred 
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from this backing store to the immediate access store 

before he could use it. 

ATLAS 1 provided the user with a “one-level store”, 

that is, the user programmed the machine as if all the 

store was immediate access store. This was (and still 

is) a great step forward. The programmer did not have to 

concern himself with the problems of deciding which part 

of his program need or could be overlayed since he has 

been provided with this large (in fact, “huge” for its 

time) store which he could use as he pleased. 

There were certain parts of this one-level store that 

were forbidden from user access but we shall mention 

these later.  

Each store cell in the one-level store accessible to 

the user consisted of forty-eight data bits and were 

arranged in groups of 512 cells, known as blocks. 

Addresses within the whole of the store (including those 

parts inaccessible to the user) consisted of twenty-four 

bits and had the format 

 

0           11 

   block no 

12                 20 

  word within block 

21 

* 

22 

* 

23 

* 

 

The first 12 bits (0 — 11) held the block number and 

the nine bits (12—20) the word within this block field. 

Bits 21 — 23 were used to hold the character address 

(and were used only in certain orders). The top three 

bits of the block field (o - 2) were used to say which 

part (either a legal to user part or illegal to user 

part) of the store was being accessed.  

How was this huge store provided? In fact the ATLAS 

hardware was very special and together with some 

sophisticated software provided this one-level store 

using a technique known as ‘paging’. The ATLAS computer 

was the very first computer to have paging of any sort, 

and this was, in fact, one of the major advances made in 

the design of ATLAS over any other machine. 

 

 

 

 

* These fields specified half word character and were 

used in certain extracodes only. 
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THE ATLAS OHE-LEVEL STORE: HOW THE HARDWARE AND 

              SOFTWARE PROVIDED IT               

 

The ATLAS hardware consisted of a fairly large (for 

its day) immediate access magnetic core store (of 16 or 

32K words) and a backing store of four 24K words 

magnetic drums. Each store cell consisted of 48 data 

bits and one parity checking bit, (thus the user saw the 

actual store cells directly). The immediate access store 

was divided into groups of 512 store cells, each group 

being known as a ‘page’. - A store cell could be 

identified as cell i of page p, where 0 < i < 512 and 0 

< p < 63 (for the 32K machine). It will be noticed that 

the word within block range of the virtual address is 

identical to the word within page range, and that the 

block range is much longer than the page range. On ATLAS 

1, store cell addresses were 14 bit long, viz.  

 

0                 5 

page 

6                   14 

word within page 

 

and virtual address (i.e. those produced by a program) 

were 24 bits long, viz. 

0        11 12        20 21 22 23 

block word within 

block 

 

    Character 

   address 

 

Obviously, there must have been some method by which 

one was transformed to the other. We notice that here 

there is a transformation between the virtual processor 

(the one the user sees) and the real processor (the 

actual hardware). 

When we are transforming something as basic to a 

computation as the addresses it uses, then this must be 

carried out at very high speed so that the virtual 

processor will run at an acceptable speed. It was to 

this end that ATLAS 1 was provided with very special 

hardware to achieve this address transformation.  

We must also observe that the immediate access store 

was too small to accommodate all the blocks that the 

user may use — where were the blocks which would not go 

into the immediate access store kept? In fact, this is 

fairly simply answered, the blocks were stored either 
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on one of the drums or in the main core store. 

We shall consider the accessing of a word in the one-

level store, observing how the address transformation is 

achieved.  

Suppose we consider a virtual address of the form:  

0                11 

B 

12                  23 

L 

 

The transformation operates as follows:— 

The L field of the virtual address (bits 12 — 25) are 

passed directly through the transformation unit 

unchanged. The block field is transformed into the page 

number of the main store page where the block is 

presently residing. 

A special inverse table of 64 (for the 32K machine) 

12 bit words was held in the machine. There was an entry 

for each core store page of the machine, in this table, 

which held the block number which was currently residing 

on that page of the store. This table was looked up 

associatively, that is by contents, with the block 

number, to find which page on which the block being 

accessed currently resided. In normal table look-up, the 

key that is being looked up is used as the offset from 

the base of the table, but in associative look-up the 

key is compared with each of the entries in the table in 

turn until an identical entry is found, when the offset 

of this entry is then given as the ‘looked— up value’. 

(This look-up may take place in parallel and did on 

ATLAS.)  

So then, the incoming virtual block number was looked 

up associatively and one of two events then occurred. 

Either there was “non-equivalence”, i.e. there was no 

entry in the table corresponding to the virtual block 

being looked-up, in which case a “paging interrupt” was 

signalled, or there was “equivalence”, i.e. the virtual 

block number had been matched with an entry, in which 

case the offset of that entry in the table was known and 

used as the page field of the real address. The top 

fifteen bits of the transformed address (0 - 14) were 

then used as the address for 
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Diagram 3: Address Transformation 

0 0 2 3 7 3 2 0 VIRTUAL ADDRESS

BLOCK STORE CELL CHARACTER

B

P

0 0 2 3

P 7 3 2 0

0 5 6 14 15 17

REAL ADDRESS

L

0 0 2 3 7 3 2 0 VIRTUAL ADDRESS

BLOCK STORE CELL CHARACTER

B

P

0 0 2 3

P 7 3 2 0

0 5 6 14 15 17

REAL ADDRESS

L
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whatever operation was being carried out. The low 3 bits 

(15 - 17) of the transformed address are never presented 

to the core store but are used in certain extra code 

routines. 

We mentioned earlier that the real processor was 

shared amongst various virtual processors (i.e. several 

user programs were multi-programmed together) and also 

mentioned that all virtual addresses were 24 bits long, 

so to allow this sharing it had to be ensured that each 

virtual processor accessed only those parts of the store 

which had been allocated to it. 

This could have been achieved by dividing the virtual 

store into partitions and allocating one partition to 

each user, but this would have meant that some sort of 

re-location of code and data would need to have been 

performed. A far better way was devised and used on 

ATLAS. This was to allow each virtual processor to have 

an entire virtual address space to itself. Thus, it was 

possible then for two distinct blocks belonging to two 

separate processes to have the same number. Mechanisms 

had to be provided on ATLAS to allow this sort of 

situation to be resolved successfully. In order to allow 

the above, what was really essential was that on block 

look-up in the associative table, the only blocks in the 

table that should be ‘seen’ were blocks belonging to the 

program (i.e. virtual processor) that produce the 

address under consideration. On ATLAS there was, in 

fact, an additional bit for each entry of the 

associative table which was set to a ‘1’ when that entry 

had to be ignored from the look-up process. These bits, 

known as ‘the lock-out bits’ were controlled by the 

supervision routine that dealt with program swapping. 

It should be pointed out that the associative table 

look-up was performed very quickly indeed by comparing 

the block field in parallel with the entries of the 

associative table. Diagram 4 shows the principle of the 

operation of the associative table mechanism. 
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Diagram 4: Associative Look-Up 
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Let us pursue the case where ‘non—equivalence’ 

occurred. An interrupt request would be made and 

eventually a supervisor routine would then be entered to 

‘service’ (i.e. take steps to correct the ‘fault’ that 

caused the interrupt) this interrupt. 

The supervisor routines kept a table known as the 

“block directory” for every possible block position on 

the machine (i.e. every ‘page’ in core store and sector 

on the drums where a block could be held). Entries in 

this table gave the location of a particular block for a 

certain program. The general form of an entry in this 

block directory” was  

0 = entry in use  

1 = entry empty – 

      not in use 

 

 block no.   

 

0 = core 

1=drum 

 page no. if in core  

sector no. if on 

drum 

 

It should be noted that although there were four 

separate drum units on ATLAS 1 they were regarded as one 

single ‘logical’ drum. Only one copy of a block ever 

existed either on the ‘drum’ or in the core store. This 

directory was partitioned between the virtual processors 

(programs) using the computer and all free block 

positions and the block positions needed for the 

supervisor were recorded as belonging to program 0. 

The program store directory table defined the extent 

and the start of the area in the block directory 

allocated to each of the programs sharing the machine.  

By examining the relevant entries in these tables, 

the supervisor routines could then be located where the 

block which caused the ‘non-equivalence’ was to be 

found.  

The flow chart in diagram 5 shows the way in which 

the ATLAS 1 supervisor serviced this ‘non-equivalence’ 

interrupt. 
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The computer was dismantled into cabinets weighting several 

tons each and varying in length from 8 to 12 feet. 

The motor alternators had to be dismantled and loaded separately 

because their weight was more than the lift from the lower floor 

could carry. 
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THE ’REAL’ STORES OF ATLAS 

 

By now, I hope that the reader has some burning 

questions such as where were these directories held, 

where were the supervisor routines held to deal with 

these interrupts? In fact, these tables and routines 

were held in parts of the store which were forbidden and 

inaccessible to the user. 

It will be remembered that the virtual addresses 

generated by a program had twenty-four bits. The top 

three bits of the block-field (0 - 2) were used to 

indicate if the store location was accessible to the 

user. In general, these inaccessible locations within 

the store are in separate physical parts of the computer 

and their addresses are not transformed as other virtual 

addresses. 

In the ATLAS hardware there were, in fact, four 

stores: the one-level store provided by the main core 

store and the four drums, a fixed store of 8K words, a 

private working store of 1K words and a collection of 

bistables and registers known as the V—store. 

As indicated earlier, the whole store was addressed 

uniformly, the top three binary digits of the address 

indicating which store was being accessed. The table in 

diagram 6 shows the assignment of these bits to stores. 

The FIXED STORE was a “read only” store in which 

binary ones and zeros were represented by ferrite and 

copper slugs in a wire mesh. It was used to contain 

certain programs which could not be changed: these 

programs consisted of parts of the supervisor and code 

for the extracodes. This store had a very fast read time 

of the order of 300 nanoseconds which was exceptional 

for 1960 technology. The store was “written” by setting 

the ferrite and copper slugs into plastic combs and 

setting these into the wire mesh. This operation was 

performed by the aid of a computer — initially a Pegasus 

machine was used but later ATLAS itself was used. 

The WORKING STORE consisted of 1K words of magnetic 

core store and was absolutely addressed. This store was 

used as a private work area for the supervisor. 

The V-STORE was a set of registers, device-registers-

, slugs, associative tables, lock-out bits etc. which 

were all 
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Top three bits of virtual address 

 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

 

 

 

These all specified ‘one-level store’ addresses 

1 0 0 

 

This specified the fixed store 

1 0 1 

 

This was always illegal — never existed 

1 1 0 

 

This specified the V-store 

1 1 1 

 

This specified the working store 

 

 

Diagram 6: Table of stores 
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addressable. 

Access to the working store and to the V-store was 

only possible when the machine was in a privileged (non-

user) mode of operation.  

Before leaving the topic of the ATLAS store system 

special mention must be made of the accessing 

arrangements for the main core store. The core store 

was, in fact, arranged in stacks of 8K, each stack 

having its own accessing mechanism. Thus, it would be 

possible to access all the stacks in parallel. The core 

store co-ordinator unit was, in fact, responsible for 

arranging access to stacks in parallel. The store stacks 

were used in pairs, store cells with even addresses on 

one pair and those with odd addresses in the other pair. 

So, if store cell i was in pair A, then cell i + 1 and i 

- 1 would be in pair B, and cell i - 2 and cell i + 2 

would be in pair A. It was then possible for adjacent 

words to be recovered from the core store in parallel. 

This is, we observe, the rudimentary principle of the 

interleaved store. 
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A view of one of the cabinets being taken through the front door.  

The building in which ATLAS was housed is scheduled as a building 

of historical interest and great care had to be taken not to 

damage the balcony or the fabric of the building 

Dismantling this complicated equipment presented technical 

difficulties and required expertise.  Those who undertook the 

work could not help but be influenced by the occasion. 
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THE MILL 

 

In this part we shall describe the sort of orders 

that the programmer was able to use and the view he had 

of the ATLAS mill. We shall also discuss how the mill of 

ATLAS was provided by the hardware and software. 

The earlier computers usually had at least one 

register (or accumulator) which was used to hold the 

results of orders and operands for orders. Most 

frequently these machines had an order set with orders 

of the form: 

Register  <-  register  operator  operand 

For example,  ADD  R1  53 

— add the contents if cell 53 to register 1, leaving the 

result in register 1. 

ATLAS was, in fact, provided with a large set of 

registers, or “B-lines” in ATLAS terminology, one 

hundred and twenty eight in all, most of which could be 

used by the programmer. The first one hundred and twenty 

of these were each twenty four bits long and their 

arithmetic always carried out in the two’s complement 

system. Register B0 always held zero. There was one 

floating point register known as the “accumulator”. This 

was made up of an eight-bit signed exponent and a double 

length mantissa of seventy eight bits and a sign bit. 

The mantissa was regarded as being divided into two 

parts, the most significant thirty nine bits and the 

sign bit known as M and the remainder known as L. The 

eight-bit exponent was held in the least significant 

part of register B124, which consisted only of nine 

bits. 

The top bit of B124 was used to indicate whether the 

exponent was in range, being set to 1 when the exponent 

became out of range. ATLAS floating point numbers were 

usually held in a standardised form, the mantissa x 

lying in the range  

l/8 < x < 1   and   -1  < x < -1/8  

Yes, the exponent was held to a base eight not to the 

base two, so the value of an ATLAS floating—point number 

was given by:     exponent  

sign              mantissa x 8  

(from sign bit) 

(of mantissa ) 
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An ATLAS store cell could be used to hold any form of 

information but the following formats were especially 

catered for in the system. 

ATLAS Floating-point format: consisted of forty-eight 

bits, the top eight being the exponent and the other 

forty bits the M part of the number. 

ATLAS also was specially geared to hold two twenty-

four bit numbers, these usually being taken as 21 bit 

signed integers in the top twenty-one bits of the half 

word and an octal fraction in the bottom three digits. 

Eight six bit characters (ATLAS internal code) could 

also be held in a store cell and orders were provided to 

handle these.  

The representation of a machine code order could also 

be held in a store cell. This representation specified 

function code, two index registers and an address. 

Diagram 7 summarizes the data formats of ATLAS. 

We shall now go on to consider the instruction set of 

the machine. It will be noticed from diagram 7 that two 

index registers were specified in the orders (Ba (bits 

10-16) and Bm (bits 17-25)). In some operations both Ba 

and Bm were used to provide double indexing 

(modification) and in others only Bm was used for 

indexing. Index registers are used, together with the 

address field (N) of an order to produce the address of 

the operand to be used by that order. On ATLAS the 

modifiers had the same format as the virtual address 

(i.e. the lowest three bits specified character 

positions), so to operate on successive locations, using 

a modifier register to ‘index through’, the modifier was 

incremented in bit 20 not in bit 23. 

ATLAS was provided with a very large set of orders 

(the function field was ten bits wide), half being 

provided directly by the hardware and the remainder by 

‘extracode routines’ (see later): the top binary digit 

of the function code field distinguished between 

extracodes and “basic hardware” orders (=1 then 

extracode). The “basic orders” were divided into three 

main groups:— B-codes, A-codes and test orders. 
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Diagram 7: ATLAS Data Formats 

a) Floating point 

 

0    7 8 9                             47 

   

 

 

 Exponent   Mantissa 

   Sign bit 

 

b) Two twenty-four bit half-word numbers 

 

0             20 21  23  24            44 45  47 

     

 

Integer part    Integer part 

      Octal fraction   Octal fraction 

        part       part 

 

c) Six bit characters 

         Character 7 

0   5 6  11 12 17 18 23     

        

    24 29 30 35 36 41 42 47 

  Character 0 

 

d) A Machine order 

 

0        9 10      16 17      23 24                 47 

F Ba Bm N 

 

 

 

Where F was a function code, 

 Ba and Bm index registers and 

 N the address part of the order 
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The B-codes used only the Bm field as a modifier and 

performed their operations on the B-line register 

specified in the Ba field of the order. This group 

consisted of the usual register operations: add, load, 

store, collate (i.e. AND), OR, non-equivalence, negate 

etc. There were also some fairly powerful test orders 

that would allow the contents of the Ba register to be 

replaced by the N field of the order depending on the Bm 

register being zero, nonzero, etc. A number of orders in 

this group also aided indexing: one for example had the 

effect: 

“If the contents of Bm are non-zero add 1 (in bit 

position 20) to Bm and set the N part of the order into 

register Ba. If the contents of Bm are zero, then leave 

the contents of Bmn and Ba unchanged.” 

This order was especially useful when it is disclosed 

that the program counter was referred to as register 

B127. Also within this group are the B-test orders. The 

B-test register was a two-bit register and when a number 

was set into this register one of the digits in that 

register was set to indicate if the number written to 

the B-register was =0 or ≠0 and the other set to show if 

the number was > 0 or < 0. Orders were provided to write 

a number to the B-test register and to test the above 

conditions, altering registers accordingly. For example, 

“If the B-test register is set non-zero, place the N 

part of the order in register Ba and add 1 (at bit 20) 

to register Bm”. 

Six-bit shift orders were provided in this group: 

these basic shift orders were intended primarily for use 

in extracode routines to provide character handling and 

a wider variety of shift orders. 

The A-code orders provided the floating point 

arithmetic of the computer. The operations included 

addition, subtraction, division, multiplication, 

standardising orders etc. These orders used the double 

modification of the machine, the floating point 

accumulator being implicitly used. Most of the floating 

point orders left the accumulator standardised and a 

comprehensive group of floating point test orders 

included. The floating point was, of course, carried out 

in the basic hardware in the same way as other basic 

orders. 
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The test orders have, in fact, been mentioned already 

in the above two paragraphs, but it is worth making one 

or two points again. They had a general form of “if <. 

condition> then load register Ba with N (and optionally 

an operation on Bm) else do nothing”. These orders were 

powerful enough to effect a comprehensive transfer of 

control mechanism because the program counter for user 

mode (and the other program counters too) was actually 

register Bl27. 

(Registers Bl26 and Bl25 were the program counters 

for extra- code and interrupt state respectively.) Thus, 

a transfer of control in user-mode was simply effected 

by loading a value into the register B127. Conditional 

transfers of control were then implemented by using the 

test orders, and unconditional jumps by loading a value 

into Bl27. 

At this point it seems appropriate to mention the 

special properties of some of the other registers. 

Register Bl24 has already been mentioned as holding the 

exponent of the floating point number in the 

accumulator. Register Bl23 was known as the “B-log 

register” with the special property that the value read 

from this was not the last value set into this register 

but the characteristic of the logarithm to the base two 

of the eight least significant digits of that number. 

(That is, the position of the most significant 1 bit in 

the last eight bits). For example, if we set the value 

   x x _____ x x 0 1 1 0 1 1 0 0   into B123 

 

               bit 16 

 

into Bl23, we would get the value 

   0 0 0 ______ 0 0 1 0 0 0 0 

                      always zero 

out on reading from this register. 

This register was used extensively by the supervisor 

in locating the cause of interrupts, and allowed this to 

be achieved in between two and six orders. The ordinary 

programmer could not use this register because of the’ 

danger of an intervening interrupt. 

Registers B122 and B121 were provided with special 

circuitry and they allowed indirect modification of the 

Ba operand in an order to be achieved. B121 only 

consisted of 
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seven bits and when used in conjunction with register 

B122 its contents were interpreted as the address of a 

register in the range 0 - 127. Whenever B122 was 

specified in the Ba field of an order, the contents of 

B121 were taken as a register address and the order was 

obeyed as if that register had appeared in the Ba field 

in place of B122. This pair of registers played an 

important part in the extracode system. Whenever an 

extracode was met, just before the switch was made to 

the extracode (see later) the Ba digits in the order 

were copied into B121 by the computer hardware, so 

allowing the extracode routines to operate on the Ba 

register specified by using register B122. The 

programmer was able to use this pair provided that he 

did not use any extracodes while using them, otherwise 

the values would be lost. 

Register B120 was the engineers’ console lamps and 

any value set into this cell appeared on those lamps: 

This was only useful for engineers’ test programs. 

The ordinary user, then, had to share his registers 

with the system; this did not just include the ‘special 

registers’ but some of the ordinary B-lines. Diagram 8 

gives details of those registers used by the system — 

the user still has a lot to use for himself. 

The user was not prevented from using these registers 

used by the system but would probably obtain undefined 

results by doing so. 
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Register Use made of Register 

B127 main control program counter 

B126 extracode control program counter 

B125 interrupt control program counter 

B124 floating point exponent 

B123 B-log register 

B122 

B121 
used for indirection of Ba field 

B120 engineers’ lamps 

B119 extracode operand address 

B118 

 

B111 

used by interrupt routines 

B110 

 

B100 

used by supervisor 

B99 

 

B91 

Used by extracodes 

B90 

 

B1 

for the user 

B0 always zero 

 

 

 

 

 

 

 

 

 

Diagram 8: ATLAS register usage 
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EXTRACODES  

 

The basic order code was quite extensive but was 

extended by provision of “extracodes’. These were 

routines written in the basic instruction set which were 

stored in the fixed store and carried out many useful 

operations, some of which were (and often still are) 

provided only in a subroutine library. Extracodes 

appeared identical to other orders and were recognised 

by having the top bit of their function codes set to a 

1. ATLAS was the first computer to include extracodes. 

The programmer wrote his extracode orders in the same 

way as he wrote any other order, and the two types were 

able to be freely mixed. When the hardware detected that 

the order to be obeyed (i.e. the order in the order 

register) was an extracode by detecting that the top bit 

of the function code was a 1, the order was not decoded 

as usual, but the following action undertaken: 

a) The main control program counter was incremented by 

one to point to the next order (as with any order). 

b) The address was modified by the addition of the Bm 

field and the resulting address placed in register 

B119. 

c) The seven Ba digits were copied from the order into 

register B121, unless the Ba register in the 

extracode was B122 so allowing the use of the 

indirect feature in extracode orders as in a basic 

order. 

d) The least significant nine function code digits (F1 

– F9) were subject to a transformation and set into 

the extracode control program counter, B126. (This 

transformation set B126 to 1 0 0 0 0 0 0 0 0 0 f1 f2 

f3 0 0 f4 f5 f6 f7 f8 f9 0) 

e) Control was then switched from main control to 

extracode control. 

Basic orders were then obeyed from the fixed store at a 
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location deduced from the function code specified. 

The first order of each extracode was a jump from the 

entry point table to the body of the routine. The 

extracode routines accessed their operands by using the 

address in register B119 and the B121, B122 facility. 

The extracodes all ended with an order (f1 =  f3 = 1) 

which when obeyed returned the control to the main 

control, and the order whose address was in register 

B127 was the next order that was obeyed, this being the 

order after the extracode, if the extracode had not 

caused a jump to have been initiated. 

Extracodes fell into eight main groups, these being:— 

 magnetic tape and I-O orders  

 organisational orders  

 test and character orders  

 B register orders  

 complex arithmetic and vector orders  

 double length arithmetic  

 logical and half word orders  

 arithmetic functions (including log, exp, sqrt, 

polynomial evaluation, sin, cos, tan etc.)  

These routines greatly supplemented the basic order 

set, and no doubt helped to make programming ATLAS a lot 

easier. 

It is worth noting that the ICL 1900 series of 

computers also have extracodes and these are used 

extensively. Every machine in the ICL 1900 range has an 

identical order set (as far as the programmer is 

concerned), but the real hardware of each member of the 

range is very different. Extracodes are used to provide 

this range standard order code. Some of the orders 

(floating point for example) are provided by software 

activated by extracodes on the smaller machines, but by 

hardware on the larger machines. The programmer uses 

these orders in the same way on both the small and 

larger machine. Some of the orders, the I-O orders, are 

carried out by extracodes on all the computers in the 

range. The 
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extracode facility has allowed the range to develop 

maintaining a standard order set for the whole range. On 

the 1900 computers the extracode routines are held in 

the part of the core store used by Executive and not in 

a separate fast store as on ATLAS. No other commercial 

machines have yet realized the potential of extracodes. 

We note again the way the hardware and software of 

the machine were knit together to provide the user with 

a virtual mill consisting of most of the real hardware 

plus a huge set of extracode orders to supplement this 

basic order set. Very few machines have ever had such a 

large instruction set as ATLAS had. It may be argued 

with some degree of justification that this was a 

wasteful set of orders and only very few of them were 

indeed ever used, and that a better set might have been 

chosen as the basic set to be provided by the hardware. 

Whatever one’s personal view of the order set, at least 

almost everything one ever wished for was there, 

somewhere! 
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THE CONTROL UNIT 

 

This part of the computer system is the mechanism 

that causes the stored program to be obeyed, and the 

unit which sends the control pulses to and reacts to 

signals from the other parts of the machine. It should 

be remembered from the introduction to this book that 

the discovery of the INTERRUPT allowed the computer to 

change from one task to service some event, then resume 

the interrupted task.  

This “servicing” of interrupts often involves the 

examining of special flags and registers that the 

ordinary user would have no need to access, only the 

servicing routine need look at them.  

In this sense, then, the interrupt servicing routines 

must be afforded some form of ‘privilege’ that allows 

them to examine registers and flags, perhaps normally 

forbidden from user access. Often this privilege will 

also include the use of some special orders (usually in 

connection with signals and setting flags). Most 

computers have, in fact, two modes of operation — the 

normal user mode and the mode for use by those parts of 

the operating system that need to examine the special 

registers and use the special orders. The control unit 

controls both modes of operation and administers the 

‘change of mode’.  

How will this change the way in which control 

operated in our simple model? After obeying each order 

(and at other suitable points) the control unit could 

see if any device was asking to be serviced or any other 

interrupt was registering servicing. If a request was 

found to be outstanding, then control would have to 

store away the value in the program counter ‘somewhere’, 

then load the program counter with the address of the 

interrupt handling routine and finally set the processor 

into ‘privileged mode’. The next order obeyed would be 

the first of the interrupt handling routine. If no 

request was outstanding, then control would continue 

obeying the next user order. After servicing the event, 

the interrupt routine would then execute a “leave 

interrupt routine order” which would have to return the 

computer to the exact state that it was in prior to the 

servicing of the interrupt. This would involve loading 

the program counter with the value “stored away” and 

switching the processor back to “user mode”. To 
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ensure that the servicing of the interrupt did not 

change the state of the machine, it may be necessary for 

the machine’s registers to be saved at the beginning of 

the interrupt routine and restored at the end of the 

routine.  

ATLAS had three, not two, processor states and these 

were known as  

• M-state (main or user control) 

• E-state (extracode control) and 

• I-state (interrupt control) 

The I-state was the most privileged state and this 

was used for only very small parts of the supervisor and 

in this mode of operation the one-level store was never 

used. The E-state was the next most privileged mode on 

the machine and it was in this mode that much of the 

supervisor and all the extracodes were obeyed. User 

programs always ran in M-state, except, of course, for 

the execution of extracodes they initiated. 

The ATLAS control unit had two special bistables 

which were used to indicate the processor state, one 

indicating either I-state or M/E-state and the other 

indicating either M or E state. As has already been 

noted, ATLAS had three and not one program counter — one 

for each of the three machine states. So, conceptually, 

at least, when obeying program, control examined the 

state bistables and used the appropriate program 

counter. On sensing an interrupt request the ATLAS 

hardware proceeded as follows: 

1. Set the “inhibit interrupts” flag  

2. Set the address of the interrupt service routine 
into the I-state program counter, B125  

3. Set the I/ME bistable to the I-state and then 
reset the “permit interrupts” flag  

Execution then continued at the order Whose address 

was in B125. We notice that ATLAS only inhibited further 

interrupts when actually entering I-state; once in I-

state further interrupts only set flags and did not 

cause a re-entry to be made to the servicing routines. 
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How did the service routine locate the cause of the 

interrupt request? Well, on many machines this is only 

found by examining a set of individual flags and finding 

the first one set, then taking the appropriate action. 

All this testing would need to be performed by orders 

and could be quite a lengthy process. On ATLAS there 

were about one hundred different reasons for an 

interrupt occurring and such a software method described 

above would have been far too slow. 

Here again, we observe the way in which the hardware 

and the needs of the operating system have been married 

together. The device flags (these were one-bit 

indicators which were set whenever the device or event 

they represented required servicing) were built up into 

a tree structure consisting of four levels. At the 

lowest level of this tree were the device flags, and 

these were grouped together in eight-bit registers. Each 

level of the tree was connected to the next highest in 

such a manner that the groups of eight bits at the lower 

level were connected to one bit at the higher level. At 

the root of the tree was a single bit indicator known as 

the “Look At Me” bistable. These flags and registers 

were all part of the V-store. So, for example, if a tape 

reader wanted servicing, it would set its own device 

flag in the lowest level of the tree and so set the tape 

reader bits all the way to the top of the tree setting 

the LAM bistable. The setting of this flag informed 

control that an interrupt required servicing. Diagram 9 

illustrates a simplified version of part of the 

interrupt tree. 

 

To discover the cause of an interrupt programmed 

orders (held in the fixed store) were used in 

conjunction with the B-log register, B123. The top level 

of the tree was loaded into B123 (giving the position of 

the most significant 1 in this level): a jump was made 

using the value in B123 a modifier. This sort of action 

was repeated, loading the registers for levels into B123 

as appropriate, then jumping. 

This system very rapidly located the cause of the 

interrupt. The supervisor’s interrupt routines were all 

kept very short and most of the servicing routines only 
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Diagram 9: Part of the simplified ATLAS interrupt tree 

LAM
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took the minimum amount of action, causing a request for 

the appropriate SER to be run. (See later) 

At the end of each interrupt routine the control was 

transferred to the beginning again to check for any 

further interrupt requests to allow these to be dealt 

with. If no interrupts required servicing the exit from 

the interrupt servicing was performed. This simply 

involved setting the I/ME bistable back to the ME state. 

Control would then continue obeying orders from the 

specified cells in either B126 or B127 depending on the 

machine being in E-state or M-state. 

The observant reader will have noticed that ATLAS did 

not, in fact, change registers, so that values in some 

of them will have been changed. It will be remembered 

that the registers were partitioned between the user and 

the system providing a simple and fast solution.  

The high speed of interrupt entry and exit is very 

largely due to the very specialized hardware used in the 

computer, and indeed, I believe that the entire 

interrupt system shows a very well engineered overall 

system with full hard and software integration. 

The method used to search the interrupt tree for the 

demanding device/event imposed a priority on the order 

in which the supervisor serviced the interrupts. This 

priority is imposed by the method used to search the 

tree and in the way the device flags were allocated 

within the tree. The priority was used by the designers 

to ensure that those devices that had to be serviced 

fast were serviced first. (The original paper tape 

readers were like this, as they would lose a character 

if it were not taken directly from them.) The order of 

priority was roughly: parity failures, magnetic tape 

peripherals, card readers, paper tape readers and 

punches, line printers, non-equivalence (from the one-

level store), drum events, division overflow and illegal 

function codes. It will be noticed that extracodes were 

obeyed in a special mode, E-state. The entry to and exit 

from extracodes has already been dealt with in the 

section on the Mill. Extracodes like ordinary user 

programs could be interrupted. 
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The control unit of ATLAS was also concerned with 

operating a simple instruction pipe-line. This was again 

an idea pioneered in ATLAS (and in the IBM STRETCH 

machine) and is one of the topics of great current 

interest. Essentially pipe-lining involves the overlap 

of parts of one order with others. For example, while 

obeying one order, there is no real reason why the next 

one to be obeyed is not obtained from the store, and 

while actually reading from the store, the program 

counter may be incremented. This is by no means a simple 

sort of system to try and implement. The reader should 

be aware that this currently fashionable idea was 

pioneered some time ago. 
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Mr. R.H. Williams, who was responsible for the 

dismantling of the computer with his daughter, 

Mrs. C.M. Cox who is the author of the Richard 

Williams & Partners Computer Specialists’ 

computer publications which have appeared 

annually for many years 

One of the bays showing the thousands of printed 

circuit cards which constituted a large part of the 

computer. 
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THE INPUT-OUTPUT PERIPHERALS 

Most computers have an extensive set of input-output 

peripherals and ATLAS was no exception. The LONDON ATLAS 

peripherals consisted of:—  

 2 I.C.T. type 593 card readers (600 cpm) 

• 1 I.C.P. type 582 card puncfl (100 cpm) 

• 2 Anelex lineprinters (1000 1pm) 

• 5 TR5 paper tape readers (300 ch/sec) 

 3 Teletype paper tapes punches (100 ch/sec) 

 4 Creed 75 teleprinters (10 ch/sec) 

• 2 Potter MT-120 half inch tape decks and 

• 14 Ampex T.M.2. one inch tape units 

All the slow peripherals (that is all except the 

magnetic tape units) were controlled by the peripheral 

co-ordinator, and had device buffer registers and flags 

in the V-store. The supervisor actually managed all of 

these devices and these slow devices were never driven 

on-line by a program other than by the supervisor. The 

huge difference in speed between the central computer 

and these devices would have made it economical suicide 

to allow these to be driven directly by a program. 

The virtual peripherals seen by the ATLAS user fell 

into two types — the slow peripherals and the fast 

peripherals. The fast peripherals consisted essentially 

of the magnetic tape units and these are described in a 

later section. The slow peripherals were, in fact, 

“spooled” by the supervisor onto a magnetic tape. For 

example, if the user wanted to read a paper tape in his 

program, the supervisor would first read the paper tape 

in and store it on a magnetic tape known as the system 

input tape When the job requiring this tape was being 

processed, it would input its data by using an extracode 

which would initiate supervisor action to provide the 

data which it had spooled away. (See later for details.) 

The user in fact, was 
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only aware of a set of logical device streams and the 

actual devices that supplied the information only of 

interest to the supervisor. All input and output via the 

slow peripherals was converted to (from) a standard 

internal code, known as the ATLAS Internal Character 

code. Every document read by file system was transferred 

into this code, unless specified as binary. This 

facility allowed various external representations to be 

used, and the user merely informed the system what 

external code had been used and the part of the 

supervisor that read the documents carried out the 

appropriate translation. This greatly aided making 

program devices independent. 

Extracode orders were provided to deal with these 

logical devices: the programmer could select a logical 

channel, read characters or records from it, write 

characters or records to it, etc. 

The user’s virtual slow peripherals were indeed very 

simple to use (as easy as in high-level languages) and 

that’s how they should be in all systems! 

The ATLAS ONE INCH MAGNETIC TAPE SYSTEM was of a very 

special type. A normal magnetic tape system allows data 

to be written to or read from the tape in a serial 

fashion only during one pass over the whole tape. Thus, 

to update a file on such a tape, it is necessary to copy 

the whole tape from start to finish incorporating the 

appropriate changes in the new version. The ATLAS One 

Inch Tape System was rather cleverer than this. Every 

magnetic tape, before being brought into use was 

initialized with blocks and block addresses. The tape 

decks and their controllers were specially designed so 

that the tape on the deck could be positioned at a 

specified block, enabling any named block on the tape to 

be accessed. This tape system, then, allowed the 

initialized magnetic tapes to be used in a random 

fashion, allowing the addressed block to be either read 

or written. This facility allowed the updating of 

individual blocks within a magnetic tape without the 

need for copying the whole tape. Although random access 

was possible with these tape decks, it was rarely used 

as the latency time was very high perhaps as long as 3 - 

4 minutes. Extracodes were provided for the users to 

read and write blocks into these tapes: there were also 

extracodes to title a tape and request that a tape be 

mounted. These tapes were, of course, intended for 

binary output. The One Inch Tape System was essential to 

the 
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operation of the ATLAS supervisor, three such decks 

being needed. One was used for the system input tape, 

one for the output tape (the spooling) and one for the 

supervisor itself. This last unit held the most commonly 

used compilers as well as the supervisor. This tape 

system proved to be rather less reliable than it had 

been hoped it would be and must be regarded as one of 

the reasons the system never reached its predicted 

performance. 
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THE WAY THE USER USED ATLAS 

Having now described each of the units of ATLAS, we 

shall now think about the way the user actually used 

this virtual processor, and how the supervisor went 

about organising things. 

With ‘hands-on’ access to a machine, the user could 

simply input his program directly, then make the system 

(if any) obey him by typing commands or setting hand 

keys. This is also true of an interactive system. ATLAS 

provided a batch service, not an interactive system, 

forcing the user to supply, in addition to his program 

and data, instruction as to how his job was to run. 

Because ATLAS was substantially an automatic batch 

system, run without operator intervention, the 

instructions on how to run the job were given to the 

supervisor program. 

ATLAS had a fairly simple, though quite 

comprehensive, job control language. The user simply 

submitted his program, data and job control documents, 

each on any media he desired, and his job was run. The 

term “document” in ATLAS terminology had the special 

meaning that it was a self-contained section of 

information presented to the computer through one input 

channel. For example, a collection of data on a length 

of paper tape was a “document”. Each document carried at 

its head a heading and a title and an end of document 

mark at its tail. As each document was input, the 

supervisor would put the document on a list which gave 

the type of document and the place on the input tape 

where it had been stored.  

The document with the heading “JOB” was the document 

that contained the instructions to the computer telling 

how a job was to be run, and was known as the “job 

description”. The line after the heading gave the title 

of the document, and this was the name used by the 

supervisor for that document. The job description gave 

full details of all other documents needed to execute 

the job, together with estimates of store and time 

required. There was no concept of the “job step” (as in 

OS/360 on George 3) in the ATLAS job description, only 

one step could be specified per job description. This 

was a disadvantage, forcing multi-step jobs to be run as 

many small jobs.  

The document headed “COMPILER” was known to hold the 

source of a program to be compiled using the named 

compiler. The heading “DATA” said that the document 

following was to be used for data. Diagram 10 shows an 

example of an ATLAS job. 
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Diagram 10: An Atlas Job 

 

JOB Heading 

ABC, SMITH title 

INPUT the input section of the job 

description 

0 ABC,PIPRO4 assigns to channel 0 the document 

called ‘ABC,PIPRO4’. Channel 0 was the 

conventional input for all compilers. 

1 ABC,PIDATA1 assigns the document named 

‘ABC,PIDATA1’ to channel 1, this would 

be the data for the compiled program. 

4 ABC,PIDATA2  

OUTPUT output section of the job description 

0 LINE PRINTER  

1 EIGHT HOLE PUNCH 3 BLOCKS 

COMPUTING 15000 

INSTRUCTIONS 

Maximum time to be allowed.  This could 

be specified in hours, minutes, seconds 

or in ‘instruction interrupts’.  One 

instruction interrupt being 2048 basic 

orders or so. 

STORE 20/30 BLOCKS specified the maximum number of store 

blocks to be allocated to the program. 

20 for the object program, 30 for the 

compiling process 

***Z end of document 

COMPILER FORTRAN what follows is a source program to be 

compiled using the compiler named 

FORTRAN 

ABC,PIPRO4 Name of document 

program↕ 
 

***Z  

DATA What follows is a data document 
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ABC,PIDATA1  

data   ↕ 
 

***Z  

DATA  

ABC,PIDATA2  

    ↕ 
 

***Z  
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A WALK THROUGH THE SUPERVISOR 

 

Let us now consider the way the user’s job was run by 

the ATLAS supervisor.  

The various documents for the job were input through 

the computer’s peripherals — each document could happily 

be on different media — and stored away on the system 

input tape by the supervisor. The supervisor recorded 

the name, type and location on the input tape of each 

document it received. Once all the documents for a 

particular job had been read in, the job was put onto a 

private list of the supervisor’s, known as the “job 

list” which held jobs that could be run. Every job on 

the job list was classified into one of eight groups 

according to its attributes. These groups divided the 

jobs principally into high priority job, tape job, short 

jobs, long-non-—tape jobs and low priority jobs. The 

scheduling part of the supervisor then selected jobs 

from this list and put them onto “the active list”, 

removing them from the job list. Once on this list, the 

job control document for the job was read from the 

system’s input tape and a coded form of this set up. The 

supervisor then requested the operators to set up any 

magnetic tapes required by the job. Communication from 

the supervisor to the operators was handled over one of 

the teleprinters. To communicate with the supervisor, 

the operators originally had to input a message through 

any one of the slow peripherals, as the machine had no 

teletype-like device communications had to be carried 

out by means of paper tape or cards. (A typewriter was 

added to the London ATLAS during its life.) This, 

however, was not as serious a drawback as it would 

appear to those familiar with the IBM 360 or ICL 1900 

computers. The ATLAS supervisor was a very advanced and 

sophisticated piece of program and needed very little 

information from the human operators, that even when 

fitted, the console typewriter was of very little use. 

The supervisor merely issued requests for the 

operators to act upon. It would request for magnetic 

tapes to be mounted, printer paper to be reloaded, etc. 

You may wonder how the supervisor was told as to which 

tape was mounted on which deck — well, the answer is 

simply, it wasn’t! The supervisor found this information 

out for itself by reading the tape number from the 

magnetic tape: once the operator mounted a tape, he 

pressed the ‘engage’ control which signalled the 
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Diagram 11: The ATLAS Spooling System 

Slow input device

System input tape

Slow output device

System output tape

Input well User's job Output well
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supervisor to identify the tape. This certainly made the 

mounting of the wrong tape rather more difficult. 

Once all the tapes required by the job were mounted, 

the supervisor would then read the first few blocks of 

each input document required by the job from the 

system’s input tape into its INPUT WELL and a copy of 

the required compiler was recovered from the supervisor 

tape. The INPUT WELL was an area of the store where the 

supervisor held buffers for each active job: in reading 

data into a job, the supervisor would hand the data from 

the system’s input tape into the INPUT WELL, then hand 

it over from there to the program. A similar arrangement 

existed for the output. Diagram 11. shows the total 

arrangement of the ATLAS spooling system. 

Once all the above had occurred, the job was moved 

onto the “execute list”. From this list, the completely 

assembled jobs were selected by part of the supervisor 

known as “the execute scheduler” and multi-programmed 

together. Output was written from the jobs via the 

SYSTEM OUTPUT WELL onto the system’s output tape. Once 

all the output for the job had been converted to hard 

copy, the input and output documents were removed by the 

supervisor from the system input and output tapes. 

One notices at once how little human intervention 

ever occurred in the processing of a job — the operators 

appear only to serve some primeval god, feeding it with 

information in response to its commands. The size of the 

lists used in the system were kept fairly small so that 

there was never more than twenty-four jobs in the 

machine at once: once this limit was reached, the 

machine refused to ‘eat’ any more. The restriction on 

the number of jobs in the machine at the same time was 

partly due to the failure of the magnetic tape system in 

meeting its predicted performance, making the Input and 

Output tapes less reliable than was needed. 

So far, we have only mentioned the supervisor as 

performing tasks. Let us just peep at the sort of beast 

this remarkable piece of software was.  

The supervisor controlled all the system functions 

not provided directly in the hardware of the machine and 

dealt with organising and running the entire machine’s 

resources. It was activated in many ways — as the result 

of some user program requesting a peripheral transfer, 

as the result of 
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a one-level store transfer being necessary, and as the 

result of an interrupt. 

The ATLAS supervisor consisted of many different 

routines which were normally dormant but which could be 

woken up when required. These routines were known as 

Supervisor Extracode Routines (SERs). All the 

supervisor’s tasks were carried out by SERs, these being 

obeyed in E-state and many of them residing in the fixed 

store. The SER’s not in the fixed store were held in 

parts of the one-level store owned by the supervisor. 

The SERs were activated as the result of some form of 

supervisor request being made and their activation was 

achieved via a special routine known as “the co—

ordinator”, which arranged a priority of execution for 

the SERs. 

Because SERs were written to be obeyed in E-state, 

they could be interrupted by interrupt requests. 

The supervisor was, in fact, held on the supervisor 

magnetic tape with parts loaded into the one—level 

store. The most used SERs were permanently set in the 

fixed store. Because some programs existed permanently 

in the machine, this meant that starting was relatively 

simple. Once the machine had been powered up, it only 

needed the relevant fixed store routine to be entered, 

to load the rest of the system - this was achieved by 

pressing the engineers’ interrupt control. Essentially, 

this caused some basic hardware tests (also stored in 

the fixed store to be executed) and then the supervisor 

to be read down from tape into the store — a lot easier 

than loading a bootstrap via the hand keys. 
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A SURVEY OF THE SOFTWARE AVAILABLE ON ATLAS 

 

Although development was initially very slow, ATLAS 

eventually was well endowed with an extensive set of 

compilers and utilities. In this section we shall give a 

survey of some of these.  

The list was long, but included the following:—  

ABL 

FORTRAN V 

HARTRAN 

ATLAS AUTOCODE 

ALGOL 60 

COMPILER-COMPILER 

BCL 

MERCURY AUTOCODE 

SERVICE 

EXCLF 

and COPYTAPE 

The ABL Compiler (ATLAS Basic Language) provided a 

convenient, simple way of assembling machine code 

programs. Each ABL instruction corresponded to exactly 

one machine order (basic or extracode order) and each 

part of the ABL order mapped exactly on to the 

corresponding parts of the machine instruction. In its 

simplest form, an ABL order consisted of four numbers 

corresponding to each part of a machine code order, but 

extensive facilities were provided for the user to use a 

wide variety of symbolic expressions. A full set of 

system directives were also provided to allow the 

complete assembly of programs and a library of routines 

was provided.  

The HARTRAN compiler was the first ATLAS FORTRAN 

compiler, and was developed for the Harwell ATLAS and 

included many useful extensions to that language. 

The FORTRAN V language was developed by Atlas 

Computing Services in London and provided ever more 

powerful extensions to the language than HARTRAN had. 

The extensions in FORTRAN V included a block structure, 

fully dynamic array, a clear statement, improved loop 

and format specifications etc. FORTRAN V contained 

A.S.A. FORTRAN IV as a subset and 
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was quite compatible with IBM 6o FORTRAN and HARTRAN. 

The ATLAS ALGOL 60 system provided a fairly flexible 

system, allowing many different representations of ALGOL 

60 to be used. Simple I/O procedures were provided and 

the user had the option of selecting his routines from 

libraries that were compatible with many other computers 

including the KDF9 and ICL 1900 machines. 

The compiler known as “COMPILER-COMPILER” was 

designed by R.A. Brooker and D. Morris especially to aid 

the compiler writers in writing the set of systems 

compilers for ATLAS at Manchester. Compiler-Compiler 

language was specially orientated towards the writing of 

compilers having special facilities for recognition of 

phrases and for dealing with such structures. 

Compiler SERVICE was, in fact, a set of system 

utilities and the “source program” for this compiler 

consisted of requests for various utility tasks to be 

carried out. These included tape dumping, copying, media 

converts, editing, etc. 



72. 

 

 

The downstairs room with its false floor, the computer 

finally removed and the engineers dismantling the cabling 

of which there was a considerable quantity.  Large pieces 

of cabling had to be of a precise length so as not to 

upset the timing of the computer’s operation. 
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CONCLUSION 

 

We have now dealt with all the notable features of 

ATLAS, and the most revolutionary parts of the machine 

have been discussed. The impact of these ideas has been 

great on the computing world, yet still many of the 

wonderful ideas used in the machine have been ignored. 

ATLAS stands alone as a supreme example of close co-

operation between industry and a university and perhaps 

is symbolic of Great Britain in the early 1960’s. 

The London ATLAS and the Manchester ATLAS have now 

both been scrapped: the Harwell machine is shortly to 

follow them later this year. 

ATLAS has returned, leaving the heavens to support 

themselves, to its place in mythology, like its fellows, 

Mercury, Sirius, Pegasus and Orion, before it. 
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