

The Story of

ATLAS

A computer

By IAIN STINSON

Transcribed for the World Wide Web in 2013 by Dik Leatherdale and Bob Hopgood by kind permission
of Iain Stinson (who continues to assert his rights as author) and of the publisher, Mrs Carys Cox.

This version attempts to replicate the look and feel of the original publication. Another version which
readers may find easier to read may be found at

http://www.computing-chilton.org.uk/acl/literature/books/london_atlas/contents.htm
together with some additional contemporary photographs.

http://www.computing-chilton.org.uk/acl/literature/books/london_atlas/contents.htm

2.

copyright ©

Richard Williams

The contents of this book must not be reproduced by

any process without the prior knowledge and consent

of the copyright holders and publishers

Richard Williams & Partners Computer Specialists

P.O. Box 0, Llandudno Wales, Great Britain.

3.

PREFACE

When I acquired the London ATLAS on the 30th

September 1972, I felt that it would be a pity for this

machine to die without its story being told and recorded

for history.

But which story? The story as seen through the eyes

of Ferranti who initiated its design and development in

conjunction with the Manchester University, or the story

of the public relations men from International Computers

Limited, who by now were ostensibly responsible for the

machine, although, in fact, they had had little or

nothing to do with its conception, or the story written

by the newspaper men from official handouts or backroom

gossip?

In fact, there was little or no newspaper story of

the death of the London ATLAS. It merited a very short

paragraph in one or two of the technical journals, but

otherwise, like the old soldier, it simply faded away.

I decided, therefore, to invite a young man who had

used the machine fairly extensively and who had access

to other people who had had intimate relations with the

machine to write the tale for me.

His terms of reference were to describe in what way

ATLAS differed from other computers and, as far as

possible, to give his judgment on how it measured up to

the abilities claimed for it and in what way it might

have achieved better-than-anticipated performance, and

how it high-lighted unusual circumstances.

The result has been this book which gives a factual

and a reasonably unbiased view of the computer. It has

turned out to be a very good text book, not only in the

sense of the technicalities it high-lights, but also in

the hidden lessons behind the events which occurred.

The development of ATLAS, in my opinion, was the peak

of the exploitation of British computer development.

4.

This photograph shows the main upstairs computer room where

the actual work was done. The spiral stair case described

by the author was in the adjoining left-hand small room

5.

Immediately after that peak the end of the British

computer industry was in sight despite what may be

rumoured in the market place of the wares to come.

Some of these later developments have made their

appearance but have not made any real impact, and the

moral of the whole of the last fifteen to twenty years

of British computer activity undoubtedly is that the

ideas and ingenuity were there, but the backbone and

courage to see things through were lacking in those who

had the authority.

Richard Hugh Williams

Managing Director

Computer Consultants (International) Ltd.,

G.P.O. Box 8,

Llandudno, Wales. March, 1973.

6.

The author, who is single, was born in 1949 at South

Shields, County Durham.

He studied at the Grammar School there and went up to

Royal Holloway College, University of London, to read

Mathematics and Computer Science.

During 1971-72 he attended the University of London

Institute of Computer Science as an M.Sc. student. He is

presently engaged in research in computer operating

systems.

He was first introduced to computers while at school

where he was able to use the Pegasus computer which had

been given to the school by a large insurance company.

This unusual fact probably accounts for his early

interest in electronic computers.

His hobbies include music of all types — something

that seems common amongst many computer people - and he

is a keen organist, being a joint holder of the World

Harmonium Playing record.

Although his family are all interested in music,

there are no other scientists amongst them.

7.

FOREWORD

This short book outlines the history of the London

University ATLAS and gives an informal description of

the way in which the machine operated. The contents of

the book should be regarded as an overview of the entire

ATLAS system. The author did not, himself, ever

contribute to this great work, but asks only that the

text be treated as a report on the great achievements of

others.

The author wishes to thank the many people who were

concerned with the London ATLAS for their advice and

memories.

The helpful advice of Professor Buckingham and

Professor Howarth of the University of London Institute

of Computer Science is particularly acknowledged.

lain Stinson, M.Sc.

47 Roman Road,

South Shields,

Co. Durham. March, l973

8.

9.

INTRODUCTION

At the end of September 1972, the University of

London ATLAS 1 Computer was taken out of service to be

sold for scrap. This was rather a sad occasion for all

those who had operated and used ATLAS, but this day also

marked the end of the ATLAS era, the beginning of which

made a very important impact on the computing world,

which impact is still important today.

The ATLAS computer was the result of many years of

co-operation between the University of Manchester and

Ferranti Limited. This co-operation was begun with the

“Manchester Universal Computer” marketed by Ferranti as

the “Ferranti Mark 1 Electronic Digital Computer”. This

machine was built on a design developed by Professor

Williams and Professor Kilburn at Manchester, and used

cathode ray tubes for high speed storage backed by a

magnetic drum store. The Ferranti Mercury Computer was

also developed jointly with the University of

Manchester. Mercury was, in its time, a highly advanced

computer having both drum and magnetic core stores.

ATLAS must be seen as an example of very deep

collaboration between industry and an academic

institution, the resulting design being extremely

advanced and sophisticated.

The ideas pioneered in ATLAS included ‘the one-level

store’, extracodes, a rudimentary instruction pipeline

and a very sophisticated operating system (known as “the

Supervisor”), which drove the system with a minimum of

human intervention.

This book is divided into two basic parts: the first

part gives a potted history of the early days of the

ATLAS at the University of London and the second

outlines, in an informal way, some of the distinctive

features of the ATLAS computer system.

10.

Diagram 1: The University of London Atlas Computer System

Slow peripherals

Peripheral 1

co-ordinator

V-store

Fixed

Store

(8K)

Working

Store

(1K)

Central Computer

Core Store

co-ordinator

Core Store

(two 8K stacks)

Core Store

(two 8K stacks)

Magnetic tape

co-ordinator

Magnetic drum

co-ordinator

Magnetic drums

Eight

channels

switched between

decks

decks

14 Magnetic tape

11.

THE LONDON ATLAS

The University of London ordered its ATLAS computing

system from Ferranti Limited to replace their overworked

Mercury machine in August 1961. ATLAS was, at that time,

the largest and most powerful system on offer in Great

Britain. The initial order consisted of :-

 the central computer

 the fixed store

 the working store

 a 16K core-store with co-ordinator

 four magnetic drums with co-ordinator

 eight magnetic tape decks with co-ordinator

 four paper tape readers, three punches, two

teleprinters, two card readers, one card punch, two

Anelex line printers

 and peripheral co-ordinator

The total value of the system ordered was of the

order of three quarters of a million pounds. The total

cost was met from four sources: the University Grants

Committee who gave a grant of £50,000 towards the cost,

the British Petroleum Company who made a substantial

contribution to the capital cost in exchange for about

one quarter of the available machine time, the

University Funds and from a loan made to the University.

At this time the University set up a company known as

Computors (Bloomsbury) Ltd. (now known as London

University Computing Services), and it was the intention

that this venture would provide a general computing

service on ATLAS for commerce and industry in order to

try to recover the debt incurred by the purchase of the

machine and to contribute to the high cost of running

such a machine. A body known as the “Atlas Computing

Services” was also established to be responsible for the

operation of ATLAS and its ancillary equipment. The

University of London Computer Unit (which became the

Institute of Computer Science

12.

in March 1964) which had operated the University’s

Mercury computer was to become responsible for research

into computer science, teaching, giving advice on

programming techniques and channelling the University

jobs to ATLAS. So the order was placed, the

administrative structure prepared and a period of

waiting with trepidation for and in anticipation of the

future began.

The Manchester ATLAS computer came into use (without

drums) in January 1963 and gradually a service developed

on the machine there. A courier service was operated

from London to the Manchester computer to frequent

programmers in London with their new servant (master?).

During August 1963, the London ATLAS was seen ‘in

action’ at the West Gorton factory with a program that

used four paper tape readers, two paper tape punches and

two line printers at the same time. The official ‘switch

off’ date at the factory was to be the end of September,

but this was delayed at the recommendation of Ferranti

to allow further commissioning to be undertaken.

The building to house the London ATLAS had been

completed in July 1963 and men from Ferranti were

engaged in laying wiring ducts and cables since then.

This building was a two-storey unit, the top floor was

to house the computer’s peripherals and the basement,

the central computer, stores, drums, co-ordinators,

engineer’s console and power regulators. The reader must

remember that because ATLAS was built using discrete

components the machine itself was very large and

demanded high power levels. Of special interest must be

the spiral staircase that connected the two levels of

this building - this surely must have been the only

computer room to boast its own spiral staircase.

Before ATLAS was delivered to London a transformation

took place: the computer interests of Ferranti Limited

became part of International Computers and Tabulators

Limited (which is now International Computers Limited).

This involved a great deal of extra work to be carried

out on ATLAS. The names on all the cabinets had to be

changed from “Ferranti” to “I.C.T.”.

At the end of October 1963 the delivery of the London

ATLAS began. A crane was moved into position and the

motor alternators (which provided the power at a more

13.

suitable frequency and voltage for various parts of the

machine) weighing between three and four tons were

lowered into their new homes under the supervision of

I.C.T. engineers. The computer itself arrived in the

middle of November together with the consoles, fixed

store, working store, some peripherals and the

peripheral co-ordinator.

A week later, more of the machine arrived including

the core store, store co-ordinator, line printers and

magnetic tape decks. Various delays seemed to have

occurred especially with delivery of the four magnetic

drums which were essential to the system.

By January 1964, the commissioning of the computer on

the site had begun: this was to be a long and somewhat

tedious process for all concerned. An extension to the

original order had been made in 1965 to include a

further 16K of core store and a new store co-ordinator

and these were to be effected at the end of 1964.

On the 11th May 1964, the computer was handed over

for a shift per day.

During the first week of this regular access to the

machine, it was promptly handed back to the I.C.T.

engineers as it did not appear reliable enough for any

serious work to be carried out on it. Gradually this

situation did improve as the hardware and software

shortcomings were corrected and small quantities of work

was processed.

On June 4th 1964, Her Majesty Queen Elizabeth, the

Queen Mother, visited the Institute of Computer Science

and the Atlas Computing Service in her official capacity

as Chancellor of the University. During this visit Her

Majesty was shown around the ATLAS installation and two

demonstration programs were run on the ATLAS computer.

One program was a concordance program for St. Mark’s

Gospel, and the second a program that printed anagrams

of Clarence House, culminating in a line—drawing of

Clarence House itself.

By the end of September 1964 the service provided on

the machine was becoming more acceptable. The lack of

full; developed software, however, was causing some

concern. In

14.

October, the computer was shut down to allow the

extensions to the core store to be made. (During this

closed period some University work was carried out on

the Manchester ATLAS.) Then the London ATLAS was back

‘on the air’ again, most of the available time was given

over to testing the machine’s performance. At this time

B.P.’s test program was getting runs of between four and

five hours, but the magnetic tape system appeared to be

falling short of its expected performance. By February

1965, B.P. were running 72-hour test sessions with only

occasional trouble from core store parities — a problem

that was to remain with the machine throughout its life.

In March of 1965, the system seemed to be ‘coming out

of the wood’ and developing into a viable service.

During April 1965, two thousand jobs were run on the

machine in one week and gradually this figure rose to

around three thousand eight hundred jobs per week in

March 1966.

Further enhancements were made to the system in the

form of two IBM compatible magnetic tape decks. These

were brought into service around April 1966, so allowing

ATLAS to read and write IBM magnetic tapes.

During its long life, the London ATLAS ran many

thousands of jobs, not, however, without problems.

Besides a certain degree of difficulty over

administration of machine time, two main problems

emerged out of the hardware. The most serious of these

was the problem with the 1” magnetic tape system which

never achieved its expected performance, and since this

part of the hardware was of a very high degree of

importance to the system as a whole, the performance of

ATLAS suffered. There were also problems with the core

store units, though these were far less serious (and

less frequent) than the magnetic tape problems.

The London ATLAS was switched off for the last time

on the 30th of September 1972 and scrapped. Parts of the

computer were, however, being sent to museums as

exhibits for technological sections.

The University of London replaced the ATLAS with two

15.

CDC machines, a CDC 6600 and a CDC 6400, and these were

gradually brought into service around 1970 — 1971.

London University Computing Services were allowed to

buy a CDC 6500 computer and still continue to provide an

extremely high quality commercial computing service.

16.

AN INFORMAL DESCRIPTION OF THE ATLAS COMPUTER

This section of the book gives an informal

description of the ATLAS computer system: both hardware

and software are considered at the same time as the

ATLAS system depended on both of these. The first few

parts of this section provide an introduction to the

operation of any computer system and various concepts,

essential to the description of ATLAS, introduced. The

later parts of this section give descriptions of the

ATLAS system and include descriptions of the ‘one—level

store’, the central processing unit (the mill) and of

some of the peripherals on the machine.

How the user used ATLAS is described in a later

chapter.

A description of some of the software that was

generally available on ATLAS is also given.

Computers and Computing

Basically, all computers can be considered in terms

of a simple “model” machine which has five basic units.

Diagram 2 outlines the structure of such a “model”

computer

This was the main control desk in the lower room. There

was intercommunication between this control desk and the

other computer locations. The control desk was donated to

the South Kensington Science Museum

17.

Diagram 2: The Model Computer

18.

In the early days of computing, the typical machine

could easily be completely classified in terms-of this

model (Pegasus, for example). Let us summarize the uses

of each of the basic five units in turn.

The STORE UNIT holds all the information that is

going to be used. Most usually, this information is held

as a pattern of binary digits, the pattern being deduced

for the information by some mapping function, arithmetic

or otherwise. The store unit itself is divided up into

individual store cells, each of which may hold a unit of

information. Each store cell has associated with it an

identifier, known as its ‘address’, and this is used to

reference that store cell. Usually the non-negative

integers are used for addresses with cells i and i + 1

being adjacent.

The MILL is the part of the machine where all the

computations are carried out. Very often this unit has

associated with it a set of store cells used to hold

results and operands for the calculation: these are

known as ‘registers’ or as ‘accumulators’ The mill will

usually have the mechanism to carry operations such as

addition, subtraction, multiplication, division,

shifting, logical operations, loading and storing

registers, testing etc.

The CONTROL UNIT is the most important part of all in

any computer system. It is, in the same sense as the

human brain, the nerve centre of the whole machine.

Conceptually at least, this unit has inside it two

special cells known as the “program counter” and the

“order register”. The program counter holds the address

of the store cell which contains the next order to be

obeyed, while the order register holds the order

currently being carried out.

Control is responsible for organising and initiating

the execution of stored program by the machine and it

does this by following a “built-in” procedure usually

known as “the execution cycle”. On some modern micro-

program controlled computers, this “execution cycle” is

a micro-program in the micro-program control store.

Basically, the “execution cycle” would operate as

follows:—

19.

1. Get a copy of the store cell whose address is in the
program counter and place this in the order register.

2. Add one to the value in the program counter cell.

3. Decode the order in the order register and send the
control pulses to the other parts of the system to

carry out the order specified.

4. When the order has been obeyed, return to the first
part of this routine if the order in the order

register is not a STOP order.

In many machines the execution cycle is much more

complex than this, but the added complications are only

due to additional features that exist on such machines.

The INPUT DEVICE on early machines, and on this

simple model, only transfers single characters from the

input media to a store cell. The OUTPUT DEVICE is

exactly similar, taking a single character from a store

cell and putting this out.

20.

The power supply cabinets were over 30 feet in length and

occupied one complete wall of the downstairs room

These motor alternators, of which there were three, supplied the

power to the computer. One set was a stand-by. There was a

separate small set supplying 80 cycle current to drive the four

magnetic drums.

21.

FASTER AND FASTER

As technology developed computers became faster and

faster, and certain problems which were hidden by the

slow speed of the earlier machines became more apparent.

The most serious problem was the large amount of time

lost in waiting for Input-Output operations to be

performed. In a large data processing system, for

example, it was found that the very expensive computer

was spending a lot of its time waiting for input and

output to be performed by comparatively slow peripheral

units. Thus, if the machine was next to obey an order of

the form

“read a character from the paper tape reader”

it would, following its execution cycle load the order

register with this order, increment the program counter,

then obey the order in the order register. This would

involve:—

sending a signal to the paper tape reader to get the

next character, then waiting while the tape reader

moved the tape along, read the next character, put it

into the store and finally sent a message to control

saying ‘finished’.

Control could then proceed with its execution cycle. A

lengthy process! is the speed of the computer’s

electronics increased, it became more apparent that a

lot of this time was being spent waiting for very slow

mechanical devices to do their tasks. (“very slow” in

fact should be regarded as comparative to the speed of

the electronics of the computer).

Economically, running a highly expensive machine like

this was disastrous as for much of the day the expensive

electronic part of the machine was sitting idle.

Several methods were considered to try and solve this

problem and reduce the amount of time spent waiting by

the computer. It was observed that by using high speed

peripherals such as magnetic tape units which could

supply more information at a higher rate, that the

22.

amount of time spent waiting was dramatically reduced.

It was this fact that inspired the famous IBM FORTRAN

MONITOR SYSTEM. This system replaced all the slow

peripherals, such as paper tape, punched cards, line

printers on the main computer with the faster magnetic

tape peripherals. A much smaller (and cheaper) computer

was then installed and all the slow peripherals were

connected to this machine, together with some magnetic

tape decks. The information was then input from the slow

peripherals to the small computer which output the

information onto magnetic tape.

The magnetic tape was then transferred to the main

computer which took all its input from this tape. A

similar method was used for output, the main computer

outputting to magnetic tape and the smaller machine

being used to convert this to hard copy. The large

machine then spent much less time waiting around for

input, since magnetic tape was much faster than any slow

peripheral and only a small, much cheaper, machine was

used to drive the slow devices — far more economical.

The next improvement in the use of machine was due to

the invention of the CHANNNEL. Even with magnetic tape

being the input/output media, the main computer still

had to wait while the transfer of data took place. The

CHANNEL, however, allowed the peripheral device

connected to transfer its data autonomously into the

store leaving the main computer free to perform another

task. The completion of the transfer was indicated by

the CHANNEL setting a flag which the main computer could

be programmed to interrogate. Thus a fragment of program

for this sort of system could be:

START I — 0 CHANNEL 1

—

—

—

Label 1.

other processing

—

—

IF CHANNEL 1 NOT FINISHED JUMP TO LABEL 1.

—

—

—

23.

This allowed the main computer to carry out some task

while the transfer was being undertaken. However, it did

mean that programs had to be written in such a way that

they asked for their input well in advance of using it

and did not use the input until the ‘transfer complete

flag’ had been set by the channel. This placed quite a

large responsibility on the programmer, making much of

his work tedious.

The invention (or perhaps discovery is rather more

accurate) of the INTERRUPT helped to make the use of

channels easier. An interrupt is best thought of as a

break in the execution of a routine in such a way that

control is passed to some other routine (known as the

Interrupt Service Routine) which can take the necessary

action and then, perhaps, restore control to obeying the

interrupted routine, so that it could continue execution

as if nothing had happened. Thus when a CHANNEL had

completed its transfer it would set its transfer

complete flag but instead of waiting for this to be

examined, the setting of this would cause an interrupt

to occur. Control could then be transferred to a routine

to deal with the end of the transfer, then return

control to the point of interruption.

While this helps to make programming more simple it

does mean that the programmer still must request his

input well in advance, so that it will be input and

present before he tries to use it. This means that he

must either still examine a flag to check that his input

is present or he must issue his read request and wait

until the input of his data is complete. Now, the whole

point of this sophistication was to obtain better

utilisation of the main computer, so the idea of sharing

the main computer between two (or more) programs

developed.

24.

These show two more views of the cabinets containing the logic

circuitry and the control circuitry in the lower room.

25.

MULTI -PROGRAMMING

In principle, the idea of multi-programming a single

computer with several different programs is fairly

simple: each program runs in turn until it is unable to

do so any longer (i.e. waiting for input or some other

event), so then another program is allowed to use the

central machine until the input operation is completed,

then the first program is allowed to continue again.

Obviously, there must be some controlling program which

arranges the swapping of programs: this program is

usually known as the monitor program, executive program

or operating system.

Monitor programs actually started their development

as a set of useful routines to aid programming. With the

advent of interrupts their role became far more

important as there had to be some reliable controlling

routine to ensure the smooth operation of programs. The

early monitor routines provided easy input-output

facilities, allowing the ordinary programmer to be

unaware of the problems of waiting for input, and

observing special flags. As computers evolved, so did

operating systems — they began to deal with certain

error conditions signalled to them by the hardware via

an interrupt, for example, divide by zero errors, etc.

One of the most important of the early monitor

systems was the Ferranti Orion “Time-sharing System”.

From the sales description of ORION, we quote:

“The time—sharing system ensures that:—

a) the computer is always doing useful work

b) peripheral devices are always kept working at their
full speed

Every time that a peripheral transfer is finished, and

every time the computer attempts to refer to data

involved in an uncompleted transfer or to any

equipment involved in such a transfer, then the time—

sharing system processes the programme (sic)

priorities in the store of the machine and decides

26.

whether to continue the operation of the present

programme or to switch to another programme.

In general, the computer will switch to the programme of

the first priority which is not waiting for the

completion of a peripheral transfer.”

“When Orion reaches the end of a problem or a batch of

data, it will not stop as previous computers would have

done. In place of a stop order there is an intentional

entry to the ‘Monitor Routine’. The ‘Monitor Routine’

will carry out appropriate changes to the programme

priority list, and continue with the remaining

programmes or read in another.”

“The priority-processing is fully automatic, as are the

arrangements for ensuring that programmes do not

interfere with one another. The programmer does not have

to concern himself with these matters when writing his

programme.”

27.

The magnetic tapes were housed in a separate room adjoining the

main upstairs computer room.

Another view of the computer room with one of the Anelex printers,

the magnetic tape in the back ground, and card readers and punches

to the left

28.

VIRTUAL MACHINES

By now it should be becoming clear that there are two

main directions in which computers develop: along the

lines of better hardware and along the lines of better

software (programs). These two, are very much inter-

related. We observe that “The programmer does not have

to concern himself....”. There is now this “helping

hand’ between the real machine (the hardware) and the

machine for which the user writes his programs, the

“helping hand” being the operating system.

In describing any post ORION computer one cannot

really separate the hardware and its operating system,

the two are ‘for better or worse’ married together to

provide the “virtual computer” that the user sees. How

different this virtual machine is from the real machine

(i.e. hardware alone) depends largely upon the “System”

(i.e. hardware plus Operating System). We may consider

the virtual machine in terms of the simple model set out

earlier: every virtual machine will have its store,

mill, input device, output device and control unit.

Several virtual machines may exist and share the same

real machine at the same time, but obviously there are

problems involved in this sharing.

As we proceed to examine the ATLAS system we will do

well to keep these early ideas in mind, observing the

way in which both the hardware and software come

together to provide the user’s virtual machine.

29.

THE STORE OF ATLAS 1

Just as in the model computer described previously,

on ATLAS the user saw a very large store built out of

store cells, most of which he could use, but parts of

which he could not use.

Most British computers before ATLAS only possessed a

fairly small store unit which could hold between 55

(Pegasus) and 4096 (Orion) words of information. It was

from this store that all the orders were obeyed and

where all the datum values had to be held for a

computation. For most purposes this store was far too

small so an additional unit, known as the “backing of

store” was added to the system.

The BACKING STORE could really be considered as an

Input/output organ, its function in life being to

provide supplementary storage space for data and

program. In real computers this device is most

frequently a magnetic drum or disc and information is

transferred from the store onto the backing store and

from the backing store into the main store.

The purpose of the backing store unit is to allow

programs which will not fit into the main store alone to

be run on the computer. The program has to be written in

such a way as to need only part of its data or code, or

parts of both, in the main store at any time. Programmed

orders are explicitly written to transfer routines and

data between the main store and backing store: these

techniques are known as “overlaying”

It should be remembered that orders are only obeyed

from, and data operated upon, from the main store and if

anything held in the backing store is needed it must

first be transferred to the main store.

Machines which had these two stores, a main store (or

immediate access store) and a backing store, were said

to possess a “two-level store”; the user saw two

distinct types of storage, one was immediately

accessible, the other having a latency time associated

with it, and the user had to wait until information was

transferred

30.

from this backing store to the immediate access store

before he could use it.

ATLAS 1 provided the user with a “one-level store”,

that is, the user programmed the machine as if all the

store was immediate access store. This was (and still

is) a great step forward. The programmer did not have to

concern himself with the problems of deciding which part

of his program need or could be overlayed since he has

been provided with this large (in fact, “huge” for its

time) store which he could use as he pleased.

There were certain parts of this one-level store that

were forbidden from user access but we shall mention

these later.

Each store cell in the one-level store accessible to

the user consisted of forty-eight data bits and were

arranged in groups of 512 cells, known as blocks.

Addresses within the whole of the store (including those

parts inaccessible to the user) consisted of twenty-four

bits and had the format

0 11

 block no

12 20

 word within block

21

*

22

*

23

*

The first 12 bits (0 — 11) held the block number and

the nine bits (12—20) the word within this block field.

Bits 21 — 23 were used to hold the character address

(and were used only in certain orders). The top three

bits of the block field (o - 2) were used to say which

part (either a legal to user part or illegal to user

part) of the store was being accessed.

How was this huge store provided? In fact the ATLAS

hardware was very special and together with some

sophisticated software provided this one-level store

using a technique known as ‘paging’. The ATLAS computer

was the very first computer to have paging of any sort,

and this was, in fact, one of the major advances made in

the design of ATLAS over any other machine.

* These fields specified half word character and were

used in certain extracodes only.

31.

THE ATLAS OHE-LEVEL STORE: HOW THE HARDWARE AND

 SOFTWARE PROVIDED IT

The ATLAS hardware consisted of a fairly large (for

its day) immediate access magnetic core store (of 16 or

32K words) and a backing store of four 24K words

magnetic drums. Each store cell consisted of 48 data

bits and one parity checking bit, (thus the user saw the

actual store cells directly). The immediate access store

was divided into groups of 512 store cells, each group

being known as a ‘page’. - A store cell could be

identified as cell i of page p, where 0 < i < 512 and 0

< p < 63 (for the 32K machine). It will be noticed that

the word within block range of the virtual address is

identical to the word within page range, and that the

block range is much longer than the page range. On ATLAS

1, store cell addresses were 14 bit long, viz.

0 5

page

6 14

word within page

and virtual address (i.e. those produced by a program)

were 24 bits long, viz.

0 11 12 20 21 22 23

block word within

block

 Character

 address

Obviously, there must have been some method by which

one was transformed to the other. We notice that here

there is a transformation between the virtual processor

(the one the user sees) and the real processor (the

actual hardware).

When we are transforming something as basic to a

computation as the addresses it uses, then this must be

carried out at very high speed so that the virtual

processor will run at an acceptable speed. It was to

this end that ATLAS 1 was provided with very special

hardware to achieve this address transformation.

We must also observe that the immediate access store

was too small to accommodate all the blocks that the

user may use — where were the blocks which would not go

into the immediate access store kept? In fact, this is

fairly simply answered, the blocks were stored either

32.

on one of the drums or in the main core store.

We shall consider the accessing of a word in the one-

level store, observing how the address transformation is

achieved.

Suppose we consider a virtual address of the form:

0 11

B

12 23

L

The transformation operates as follows:—

The L field of the virtual address (bits 12 — 25) are

passed directly through the transformation unit

unchanged. The block field is transformed into the page

number of the main store page where the block is

presently residing.

A special inverse table of 64 (for the 32K machine)

12 bit words was held in the machine. There was an entry

for each core store page of the machine, in this table,

which held the block number which was currently residing

on that page of the store. This table was looked up

associatively, that is by contents, with the block

number, to find which page on which the block being

accessed currently resided. In normal table look-up, the

key that is being looked up is used as the offset from

the base of the table, but in associative look-up the

key is compared with each of the entries in the table in

turn until an identical entry is found, when the offset

of this entry is then given as the ‘looked— up value’.

(This look-up may take place in parallel and did on

ATLAS.)

So then, the incoming virtual block number was looked

up associatively and one of two events then occurred.

Either there was “non-equivalence”, i.e. there was no

entry in the table corresponding to the virtual block

being looked-up, in which case a “paging interrupt” was

signalled, or there was “equivalence”, i.e. the virtual

block number had been matched with an entry, in which

case the offset of that entry in the table was known and

used as the page field of the real address. The top

fifteen bits of the transformed address (0 - 14) were

then used as the address for

33.

Diagram 3: Address Transformation

0 0 2 3 7 3 2 0 VIRTUAL ADDRESS

BLOCK STORE CELL CHARACTER

B

P

0 0 2 3

P 7 3 2 0

0 5 6 14 15 17

REAL ADDRESS

L

0 0 2 3 7 3 2 0 VIRTUAL ADDRESS

BLOCK STORE CELL CHARACTER

B

P

0 0 2 3

P 7 3 2 0

0 5 6 14 15 17

REAL ADDRESS

L

34.

whatever operation was being carried out. The low 3 bits

(15 - 17) of the transformed address are never presented

to the core store but are used in certain extra code

routines.

We mentioned earlier that the real processor was

shared amongst various virtual processors (i.e. several

user programs were multi-programmed together) and also

mentioned that all virtual addresses were 24 bits long,

so to allow this sharing it had to be ensured that each

virtual processor accessed only those parts of the store

which had been allocated to it.

This could have been achieved by dividing the virtual

store into partitions and allocating one partition to

each user, but this would have meant that some sort of

re-location of code and data would need to have been

performed. A far better way was devised and used on

ATLAS. This was to allow each virtual processor to have

an entire virtual address space to itself. Thus, it was

possible then for two distinct blocks belonging to two

separate processes to have the same number. Mechanisms

had to be provided on ATLAS to allow this sort of

situation to be resolved successfully. In order to allow

the above, what was really essential was that on block

look-up in the associative table, the only blocks in the

table that should be ‘seen’ were blocks belonging to the

program (i.e. virtual processor) that produce the

address under consideration. On ATLAS there was, in

fact, an additional bit for each entry of the

associative table which was set to a ‘1’ when that entry

had to be ignored from the look-up process. These bits,

known as ‘the lock-out bits’ were controlled by the

supervision routine that dealt with program swapping.

It should be pointed out that the associative table

look-up was performed very quickly indeed by comparing

the block field in parallel with the entries of the

associative table. Diagram 4 shows the principle of the

operation of the associative table mechanism.

35.

Diagram 4: Associative Look-Up

36.

Let us pursue the case where ‘non—equivalence’

occurred. An interrupt request would be made and

eventually a supervisor routine would then be entered to

‘service’ (i.e. take steps to correct the ‘fault’ that

caused the interrupt) this interrupt.

The supervisor routines kept a table known as the

“block directory” for every possible block position on

the machine (i.e. every ‘page’ in core store and sector

on the drums where a block could be held). Entries in

this table gave the location of a particular block for a

certain program. The general form of an entry in this

block directory” was

0 = entry in use

1 = entry empty –

 not in use

 block no.

0 = core

1=drum

 page no. if in core

sector no. if on

drum

It should be noted that although there were four

separate drum units on ATLAS 1 they were regarded as one

single ‘logical’ drum. Only one copy of a block ever

existed either on the ‘drum’ or in the core store. This

directory was partitioned between the virtual processors

(programs) using the computer and all free block

positions and the block positions needed for the

supervisor were recorded as belonging to program 0.

The program store directory table defined the extent

and the start of the area in the block directory

allocated to each of the programs sharing the machine.

By examining the relevant entries in these tables,

the supervisor routines could then be located where the

block which caused the ‘non-equivalence’ was to be

found.

The flow chart in diagram 5 shows the way in which

the ATLAS 1 supervisor serviced this ‘non-equivalence’

interrupt.

37.

The computer was dismantled into cabinets weighting several

tons each and varying in length from 8 to 12 feet.

The motor alternators had to be dismantled and loaded separately

because their weight was more than the lift from the lower floor

could carry.

38.

L
o
o
k

u
p

b
l
o
c
k

n
u
m
b
e
r

i
n

t
h
e

r
e
l
e
v
a
n
t

p
a
r
t
i
t
i
o
n

o
f

t
h
e

b
l
o
c
k

d
i
r
e
c
t
o
r
y

B
l
o
c
k

f
o
u
n
d

t
h
e
r
e
?

A
n
y

s
p
a
c
e

i
n

b
l
o
c
k

d
i
r
e
c
t
o
r
y

f
o
r

t
h
e

p
r
o
g
r
a
m
?

E
R
R
O
R
!

F
i
n
d

s
p
a
r
e

p
a
g
e

i
n

c
o
r
e
,

s
e
t
-
u
p

b
l
o
c
k

d
i
r
e
c
t
o
r
y

e
n
t
r
y

a
n
d

a
s
s
o
c
i
a
t
i
v
e

t
a
b
l
e

e
n
t
r
y

I
s

t
h
e

b
l
o
c
k

i
n

u
s
e
?

I
s

t
h
e

b
l
o
c
k

i
n

c
o
r
e
?

I
s

b
l
o
c
k

l
o
c
k
e
d

o
u
t
?

I
s

b
l
o
c
k

l
o
c
k
e
d

o
u
t
?

S
u
s
p
e
n
d

t
h
e

p
r
o
g
r
a
m

T
r
y

t
h
e

a
s
s
o
c
i
a
t
i
v
e

m
e
m
o
r
y

a
g
a
i
n

(
u
n
u
s
e
d

b
l
o
c
k
)

O
r
g
a
n
i
s
e

i
t
s

t
r
a
n
s
f
e
r

t
o

t
h
e

c
o
r
e

s
t
o
r
e

S
u
s
p
e
n
d

t
h
e

p
r
o
g
r
a
m

I
s

t
h
e

a
c
c
e
s
s

t
o

t
h
e

b
l
o
c
k

w
r
i
t
e

a
c
c
e
s
s
?

S
u
s
p
e
n
d

t
h
e

p
r
o
g
r
a
m

K
e
y

=

Y
e
s

=

N
o

D
i
a
g
r
a
m

5
:

T
h
e

N
o
n
-
e
q
u
i
v
a
l
e
n
c
e

I
n
t
e
r
r
u
p
t

S
e
r
v
i
c
e

39.

THE ’REAL’ STORES OF ATLAS

By now, I hope that the reader has some burning

questions such as where were these directories held,

where were the supervisor routines held to deal with

these interrupts? In fact, these tables and routines

were held in parts of the store which were forbidden and

inaccessible to the user.

It will be remembered that the virtual addresses

generated by a program had twenty-four bits. The top

three bits of the block-field (0 - 2) were used to

indicate if the store location was accessible to the

user. In general, these inaccessible locations within

the store are in separate physical parts of the computer

and their addresses are not transformed as other virtual

addresses.

In the ATLAS hardware there were, in fact, four

stores: the one-level store provided by the main core

store and the four drums, a fixed store of 8K words, a

private working store of 1K words and a collection of

bistables and registers known as the V—store.

As indicated earlier, the whole store was addressed

uniformly, the top three binary digits of the address

indicating which store was being accessed. The table in

diagram 6 shows the assignment of these bits to stores.

The FIXED STORE was a “read only” store in which

binary ones and zeros were represented by ferrite and

copper slugs in a wire mesh. It was used to contain

certain programs which could not be changed: these

programs consisted of parts of the supervisor and code

for the extracodes. This store had a very fast read time

of the order of 300 nanoseconds which was exceptional

for 1960 technology. The store was “written” by setting

the ferrite and copper slugs into plastic combs and

setting these into the wire mesh. This operation was

performed by the aid of a computer — initially a Pegasus

machine was used but later ATLAS itself was used.

The WORKING STORE consisted of 1K words of magnetic

core store and was absolutely addressed. This store was

used as a private work area for the supervisor.

The V-STORE was a set of registers, device-registers-

, slugs, associative tables, lock-out bits etc. which

were all

40.

Top three bits of virtual address

0 0 0

0 0 1

0 1 0

0 1 1

These all specified ‘one-level store’ addresses

1 0 0

This specified the fixed store

1 0 1

This was always illegal — never existed

1 1 0

This specified the V-store

1 1 1

This specified the working store

Diagram 6: Table of stores

41.

addressable.

Access to the working store and to the V-store was

only possible when the machine was in a privileged (non-

user) mode of operation.

Before leaving the topic of the ATLAS store system

special mention must be made of the accessing

arrangements for the main core store. The core store

was, in fact, arranged in stacks of 8K, each stack

having its own accessing mechanism. Thus, it would be

possible to access all the stacks in parallel. The core

store co-ordinator unit was, in fact, responsible for

arranging access to stacks in parallel. The store stacks

were used in pairs, store cells with even addresses on

one pair and those with odd addresses in the other pair.

So, if store cell i was in pair A, then cell i + 1 and i

- 1 would be in pair B, and cell i - 2 and cell i + 2

would be in pair A. It was then possible for adjacent

words to be recovered from the core store in parallel.

This is, we observe, the rudimentary principle of the

interleaved store.

42.

A view of one of the cabinets being taken through the front door.

The building in which ATLAS was housed is scheduled as a building

of historical interest and great care had to be taken not to

damage the balcony or the fabric of the building

Dismantling this complicated equipment presented technical

difficulties and required expertise. Those who undertook the

work could not help but be influenced by the occasion.

43.

THE MILL

In this part we shall describe the sort of orders

that the programmer was able to use and the view he had

of the ATLAS mill. We shall also discuss how the mill of

ATLAS was provided by the hardware and software.

The earlier computers usually had at least one

register (or accumulator) which was used to hold the

results of orders and operands for orders. Most

frequently these machines had an order set with orders

of the form:

Register <- register operator operand

For example, ADD R1 53

— add the contents if cell 53 to register 1, leaving the

result in register 1.

ATLAS was, in fact, provided with a large set of

registers, or “B-lines” in ATLAS terminology, one

hundred and twenty eight in all, most of which could be

used by the programmer. The first one hundred and twenty

of these were each twenty four bits long and their

arithmetic always carried out in the two’s complement

system. Register B0 always held zero. There was one

floating point register known as the “accumulator”. This

was made up of an eight-bit signed exponent and a double

length mantissa of seventy eight bits and a sign bit.

The mantissa was regarded as being divided into two

parts, the most significant thirty nine bits and the

sign bit known as M and the remainder known as L. The

eight-bit exponent was held in the least significant

part of register B124, which consisted only of nine

bits.

The top bit of B124 was used to indicate whether the

exponent was in range, being set to 1 when the exponent

became out of range. ATLAS floating point numbers were

usually held in a standardised form, the mantissa x

lying in the range

l/8 < x < 1 and -1 < x < -1/8

Yes, the exponent was held to a base eight not to the

base two, so the value of an ATLAS floating—point number

was given by: exponent

sign mantissa x 8

(from sign bit)

(of mantissa)

44.

An ATLAS store cell could be used to hold any form of

information but the following formats were especially

catered for in the system.

ATLAS Floating-point format: consisted of forty-eight

bits, the top eight being the exponent and the other

forty bits the M part of the number.

ATLAS also was specially geared to hold two twenty-

four bit numbers, these usually being taken as 21 bit

signed integers in the top twenty-one bits of the half

word and an octal fraction in the bottom three digits.

Eight six bit characters (ATLAS internal code) could

also be held in a store cell and orders were provided to

handle these.

The representation of a machine code order could also

be held in a store cell. This representation specified

function code, two index registers and an address.

Diagram 7 summarizes the data formats of ATLAS.

We shall now go on to consider the instruction set of

the machine. It will be noticed from diagram 7 that two

index registers were specified in the orders (Ba (bits

10-16) and Bm (bits 17-25)). In some operations both Ba

and Bm were used to provide double indexing

(modification) and in others only Bm was used for

indexing. Index registers are used, together with the

address field (N) of an order to produce the address of

the operand to be used by that order. On ATLAS the

modifiers had the same format as the virtual address

(i.e. the lowest three bits specified character

positions), so to operate on successive locations, using

a modifier register to ‘index through’, the modifier was

incremented in bit 20 not in bit 23.

ATLAS was provided with a very large set of orders

(the function field was ten bits wide), half being

provided directly by the hardware and the remainder by

‘extracode routines’ (see later): the top binary digit

of the function code field distinguished between

extracodes and “basic hardware” orders (=1 then

extracode). The “basic orders” were divided into three

main groups:— B-codes, A-codes and test orders.

45.

Diagram 7: ATLAS Data Formats

a) Floating point

0 7 8 9 47

 Exponent Mantissa

 Sign bit

b) Two twenty-four bit half-word numbers

0 20 21 23 24 44 45 47

Integer part Integer part

 Octal fraction Octal fraction

 part part

c) Six bit characters

 Character 7

0 5 6 11 12 17 18 23

 24 29 30 35 36 41 42 47

 Character 0

d) A Machine order

0 9 10 16 17 23 24 47

F Ba Bm N

Where F was a function code,

 Ba and Bm index registers and

 N the address part of the order

46.

The B-codes used only the Bm field as a modifier and

performed their operations on the B-line register

specified in the Ba field of the order. This group

consisted of the usual register operations: add, load,

store, collate (i.e. AND), OR, non-equivalence, negate

etc. There were also some fairly powerful test orders

that would allow the contents of the Ba register to be

replaced by the N field of the order depending on the Bm

register being zero, nonzero, etc. A number of orders in

this group also aided indexing: one for example had the

effect:

“If the contents of Bm are non-zero add 1 (in bit

position 20) to Bm and set the N part of the order into

register Ba. If the contents of Bm are zero, then leave

the contents of Bmn and Ba unchanged.”

This order was especially useful when it is disclosed

that the program counter was referred to as register

B127. Also within this group are the B-test orders. The

B-test register was a two-bit register and when a number

was set into this register one of the digits in that

register was set to indicate if the number written to

the B-register was =0 or ≠0 and the other set to show if

the number was > 0 or < 0. Orders were provided to write

a number to the B-test register and to test the above

conditions, altering registers accordingly. For example,

“If the B-test register is set non-zero, place the N

part of the order in register Ba and add 1 (at bit 20)

to register Bm”.

Six-bit shift orders were provided in this group:

these basic shift orders were intended primarily for use

in extracode routines to provide character handling and

a wider variety of shift orders.

The A-code orders provided the floating point

arithmetic of the computer. The operations included

addition, subtraction, division, multiplication,

standardising orders etc. These orders used the double

modification of the machine, the floating point

accumulator being implicitly used. Most of the floating

point orders left the accumulator standardised and a

comprehensive group of floating point test orders

included. The floating point was, of course, carried out

in the basic hardware in the same way as other basic

orders.

47.

The test orders have, in fact, been mentioned already

in the above two paragraphs, but it is worth making one

or two points again. They had a general form of “if <.

condition> then load register Ba with N (and optionally

an operation on Bm) else do nothing”. These orders were

powerful enough to effect a comprehensive transfer of

control mechanism because the program counter for user

mode (and the other program counters too) was actually

register Bl27.

(Registers Bl26 and Bl25 were the program counters

for extra- code and interrupt state respectively.) Thus,

a transfer of control in user-mode was simply effected

by loading a value into the register B127. Conditional

transfers of control were then implemented by using the

test orders, and unconditional jumps by loading a value

into Bl27.

At this point it seems appropriate to mention the

special properties of some of the other registers.

Register Bl24 has already been mentioned as holding the

exponent of the floating point number in the

accumulator. Register Bl23 was known as the “B-log

register” with the special property that the value read

from this was not the last value set into this register

but the characteristic of the logarithm to the base two

of the eight least significant digits of that number.

(That is, the position of the most significant 1 bit in

the last eight bits). For example, if we set the value

 x x _____ x x 0 1 1 0 1 1 0 0 into B123

 bit 16

into Bl23, we would get the value

 0 0 0 ______ 0 0 1 0 0 0 0

 always zero

out on reading from this register.

This register was used extensively by the supervisor

in locating the cause of interrupts, and allowed this to

be achieved in between two and six orders. The ordinary

programmer could not use this register because of the’

danger of an intervening interrupt.

Registers B122 and B121 were provided with special

circuitry and they allowed indirect modification of the

Ba operand in an order to be achieved. B121 only

consisted of

48.

seven bits and when used in conjunction with register

B122 its contents were interpreted as the address of a

register in the range 0 - 127. Whenever B122 was

specified in the Ba field of an order, the contents of

B121 were taken as a register address and the order was

obeyed as if that register had appeared in the Ba field

in place of B122. This pair of registers played an

important part in the extracode system. Whenever an

extracode was met, just before the switch was made to

the extracode (see later) the Ba digits in the order

were copied into B121 by the computer hardware, so

allowing the extracode routines to operate on the Ba

register specified by using register B122. The

programmer was able to use this pair provided that he

did not use any extracodes while using them, otherwise

the values would be lost.

Register B120 was the engineers’ console lamps and

any value set into this cell appeared on those lamps:

This was only useful for engineers’ test programs.

The ordinary user, then, had to share his registers

with the system; this did not just include the ‘special

registers’ but some of the ordinary B-lines. Diagram 8

gives details of those registers used by the system —

the user still has a lot to use for himself.

The user was not prevented from using these registers

used by the system but would probably obtain undefined

results by doing so.

49.

Register Use made of Register

B127 main control program counter

B126 extracode control program counter

B125 interrupt control program counter

B124 floating point exponent

B123 B-log register

B122

B121
used for indirection of Ba field

B120 engineers’ lamps

B119 extracode operand address

B118

B111

used by interrupt routines

B110

B100

used by supervisor

B99

B91

Used by extracodes

B90

B1

for the user

B0 always zero

Diagram 8: ATLAS register usage

50.

EXTRACODES

The basic order code was quite extensive but was

extended by provision of “extracodes’. These were

routines written in the basic instruction set which were

stored in the fixed store and carried out many useful

operations, some of which were (and often still are)

provided only in a subroutine library. Extracodes

appeared identical to other orders and were recognised

by having the top bit of their function codes set to a

1. ATLAS was the first computer to include extracodes.

The programmer wrote his extracode orders in the same

way as he wrote any other order, and the two types were

able to be freely mixed. When the hardware detected that

the order to be obeyed (i.e. the order in the order

register) was an extracode by detecting that the top bit

of the function code was a 1, the order was not decoded

as usual, but the following action undertaken:

a) The main control program counter was incremented by

one to point to the next order (as with any order).

b) The address was modified by the addition of the Bm

field and the resulting address placed in register

B119.

c) The seven Ba digits were copied from the order into

register B121, unless the Ba register in the

extracode was B122 so allowing the use of the

indirect feature in extracode orders as in a basic

order.

d) The least significant nine function code digits (F1

– F9) were subject to a transformation and set into

the extracode control program counter, B126. (This

transformation set B126 to 1 0 0 0 0 0 0 0 0 0 f1 f2

f3 0 0 f4 f5 f6 f7 f8 f9 0)

e) Control was then switched from main control to

extracode control.

Basic orders were then obeyed from the fixed store at a

51.

location deduced from the function code specified.

The first order of each extracode was a jump from the

entry point table to the body of the routine. The

extracode routines accessed their operands by using the

address in register B119 and the B121, B122 facility.

The extracodes all ended with an order (f1 = f3 = 1)

which when obeyed returned the control to the main

control, and the order whose address was in register

B127 was the next order that was obeyed, this being the

order after the extracode, if the extracode had not

caused a jump to have been initiated.

Extracodes fell into eight main groups, these being:—

 magnetic tape and I-O orders

 organisational orders

 test and character orders

 B register orders

 complex arithmetic and vector orders

 double length arithmetic

 logical and half word orders

 arithmetic functions (including log, exp, sqrt,

polynomial evaluation, sin, cos, tan etc.)

These routines greatly supplemented the basic order

set, and no doubt helped to make programming ATLAS a lot

easier.

It is worth noting that the ICL 1900 series of

computers also have extracodes and these are used

extensively. Every machine in the ICL 1900 range has an

identical order set (as far as the programmer is

concerned), but the real hardware of each member of the

range is very different. Extracodes are used to provide

this range standard order code. Some of the orders

(floating point for example) are provided by software

activated by extracodes on the smaller machines, but by

hardware on the larger machines. The programmer uses

these orders in the same way on both the small and

larger machine. Some of the orders, the I-O orders, are

carried out by extracodes on all the computers in the

range. The

52.

extracode facility has allowed the range to develop

maintaining a standard order set for the whole range. On

the 1900 computers the extracode routines are held in

the part of the core store used by Executive and not in

a separate fast store as on ATLAS. No other commercial

machines have yet realized the potential of extracodes.

We note again the way the hardware and software of

the machine were knit together to provide the user with

a virtual mill consisting of most of the real hardware

plus a huge set of extracode orders to supplement this

basic order set. Very few machines have ever had such a

large instruction set as ATLAS had. It may be argued

with some degree of justification that this was a

wasteful set of orders and only very few of them were

indeed ever used, and that a better set might have been

chosen as the basic set to be provided by the hardware.

Whatever one’s personal view of the order set, at least

almost everything one ever wished for was there,

somewhere!

53.

THE CONTROL UNIT

This part of the computer system is the mechanism

that causes the stored program to be obeyed, and the

unit which sends the control pulses to and reacts to

signals from the other parts of the machine. It should

be remembered from the introduction to this book that

the discovery of the INTERRUPT allowed the computer to

change from one task to service some event, then resume

the interrupted task.

This “servicing” of interrupts often involves the

examining of special flags and registers that the

ordinary user would have no need to access, only the

servicing routine need look at them.

In this sense, then, the interrupt servicing routines

must be afforded some form of ‘privilege’ that allows

them to examine registers and flags, perhaps normally

forbidden from user access. Often this privilege will

also include the use of some special orders (usually in

connection with signals and setting flags). Most

computers have, in fact, two modes of operation — the

normal user mode and the mode for use by those parts of

the operating system that need to examine the special

registers and use the special orders. The control unit

controls both modes of operation and administers the

‘change of mode’.

How will this change the way in which control

operated in our simple model? After obeying each order

(and at other suitable points) the control unit could

see if any device was asking to be serviced or any other

interrupt was registering servicing. If a request was

found to be outstanding, then control would have to

store away the value in the program counter ‘somewhere’,

then load the program counter with the address of the

interrupt handling routine and finally set the processor

into ‘privileged mode’. The next order obeyed would be

the first of the interrupt handling routine. If no

request was outstanding, then control would continue

obeying the next user order. After servicing the event,

the interrupt routine would then execute a “leave

interrupt routine order” which would have to return the

computer to the exact state that it was in prior to the

servicing of the interrupt. This would involve loading

the program counter with the value “stored away” and

switching the processor back to “user mode”. To

54.

ensure that the servicing of the interrupt did not

change the state of the machine, it may be necessary for

the machine’s registers to be saved at the beginning of

the interrupt routine and restored at the end of the

routine.

ATLAS had three, not two, processor states and these

were known as

• M-state (main or user control)

• E-state (extracode control) and

• I-state (interrupt control)

The I-state was the most privileged state and this

was used for only very small parts of the supervisor and

in this mode of operation the one-level store was never

used. The E-state was the next most privileged mode on

the machine and it was in this mode that much of the

supervisor and all the extracodes were obeyed. User

programs always ran in M-state, except, of course, for

the execution of extracodes they initiated.

The ATLAS control unit had two special bistables

which were used to indicate the processor state, one

indicating either I-state or M/E-state and the other

indicating either M or E state. As has already been

noted, ATLAS had three and not one program counter — one

for each of the three machine states. So, conceptually,

at least, when obeying program, control examined the

state bistables and used the appropriate program

counter. On sensing an interrupt request the ATLAS

hardware proceeded as follows:

1. Set the “inhibit interrupts” flag

2. Set the address of the interrupt service routine
into the I-state program counter, B125

3. Set the I/ME bistable to the I-state and then
reset the “permit interrupts” flag

Execution then continued at the order Whose address

was in B125. We notice that ATLAS only inhibited further

interrupts when actually entering I-state; once in I-

state further interrupts only set flags and did not

cause a re-entry to be made to the servicing routines.

55.

How did the service routine locate the cause of the

interrupt request? Well, on many machines this is only

found by examining a set of individual flags and finding

the first one set, then taking the appropriate action.

All this testing would need to be performed by orders

and could be quite a lengthy process. On ATLAS there

were about one hundred different reasons for an

interrupt occurring and such a software method described

above would have been far too slow.

Here again, we observe the way in which the hardware

and the needs of the operating system have been married

together. The device flags (these were one-bit

indicators which were set whenever the device or event

they represented required servicing) were built up into

a tree structure consisting of four levels. At the

lowest level of this tree were the device flags, and

these were grouped together in eight-bit registers. Each

level of the tree was connected to the next highest in

such a manner that the groups of eight bits at the lower

level were connected to one bit at the higher level. At

the root of the tree was a single bit indicator known as

the “Look At Me” bistable. These flags and registers

were all part of the V-store. So, for example, if a tape

reader wanted servicing, it would set its own device

flag in the lowest level of the tree and so set the tape

reader bits all the way to the top of the tree setting

the LAM bistable. The setting of this flag informed

control that an interrupt required servicing. Diagram 9

illustrates a simplified version of part of the

interrupt tree.

To discover the cause of an interrupt programmed

orders (held in the fixed store) were used in

conjunction with the B-log register, B123. The top level

of the tree was loaded into B123 (giving the position of

the most significant 1 in this level): a jump was made

using the value in B123 a modifier. This sort of action

was repeated, loading the registers for levels into B123

as appropriate, then jumping.

This system very rapidly located the cause of the

interrupt. The supervisor’s interrupt routines were all

kept very short and most of the servicing routines only

56.

Diagram 9: Part of the simplified ATLAS interrupt tree

LAM

Non-equivalence

Parity
Paper tape readers

Paper tape punches

57.

took the minimum amount of action, causing a request for

the appropriate SER to be run. (See later)

At the end of each interrupt routine the control was

transferred to the beginning again to check for any

further interrupt requests to allow these to be dealt

with. If no interrupts required servicing the exit from

the interrupt servicing was performed. This simply

involved setting the I/ME bistable back to the ME state.

Control would then continue obeying orders from the

specified cells in either B126 or B127 depending on the

machine being in E-state or M-state.

The observant reader will have noticed that ATLAS did

not, in fact, change registers, so that values in some

of them will have been changed. It will be remembered

that the registers were partitioned between the user and

the system providing a simple and fast solution.

The high speed of interrupt entry and exit is very

largely due to the very specialized hardware used in the

computer, and indeed, I believe that the entire

interrupt system shows a very well engineered overall

system with full hard and software integration.

The method used to search the interrupt tree for the

demanding device/event imposed a priority on the order

in which the supervisor serviced the interrupts. This

priority is imposed by the method used to search the

tree and in the way the device flags were allocated

within the tree. The priority was used by the designers

to ensure that those devices that had to be serviced

fast were serviced first. (The original paper tape

readers were like this, as they would lose a character

if it were not taken directly from them.) The order of

priority was roughly: parity failures, magnetic tape

peripherals, card readers, paper tape readers and

punches, line printers, non-equivalence (from the one-

level store), drum events, division overflow and illegal

function codes. It will be noticed that extracodes were

obeyed in a special mode, E-state. The entry to and exit

from extracodes has already been dealt with in the

section on the Mill. Extracodes like ordinary user

programs could be interrupted.

58.

The control unit of ATLAS was also concerned with

operating a simple instruction pipe-line. This was again

an idea pioneered in ATLAS (and in the IBM STRETCH

machine) and is one of the topics of great current

interest. Essentially pipe-lining involves the overlap

of parts of one order with others. For example, while

obeying one order, there is no real reason why the next

one to be obeyed is not obtained from the store, and

while actually reading from the store, the program

counter may be incremented. This is by no means a simple

sort of system to try and implement. The reader should

be aware that this currently fashionable idea was

pioneered some time ago.

59.

Mr. R.H. Williams, who was responsible for the

dismantling of the computer with his daughter,

Mrs. C.M. Cox who is the author of the Richard

Williams & Partners Computer Specialists’

computer publications which have appeared

annually for many years

One of the bays showing the thousands of printed

circuit cards which constituted a large part of the

computer.

60.

THE INPUT-OUTPUT PERIPHERALS

Most computers have an extensive set of input-output

peripherals and ATLAS was no exception. The LONDON ATLAS

peripherals consisted of:—

 2 I.C.T. type 593 card readers (600 cpm)

• 1 I.C.P. type 582 card puncfl (100 cpm)

• 2 Anelex lineprinters (1000 1pm)

• 5 TR5 paper tape readers (300 ch/sec)

 3 Teletype paper tapes punches (100 ch/sec)

 4 Creed 75 teleprinters (10 ch/sec)

• 2 Potter MT-120 half inch tape decks and

• 14 Ampex T.M.2. one inch tape units

All the slow peripherals (that is all except the

magnetic tape units) were controlled by the peripheral

co-ordinator, and had device buffer registers and flags

in the V-store. The supervisor actually managed all of

these devices and these slow devices were never driven

on-line by a program other than by the supervisor. The

huge difference in speed between the central computer

and these devices would have made it economical suicide

to allow these to be driven directly by a program.

The virtual peripherals seen by the ATLAS user fell

into two types — the slow peripherals and the fast

peripherals. The fast peripherals consisted essentially

of the magnetic tape units and these are described in a

later section. The slow peripherals were, in fact,

“spooled” by the supervisor onto a magnetic tape. For

example, if the user wanted to read a paper tape in his

program, the supervisor would first read the paper tape

in and store it on a magnetic tape known as the system

input tape When the job requiring this tape was being

processed, it would input its data by using an extracode

which would initiate supervisor action to provide the

data which it had spooled away. (See later for details.)

The user in fact, was

61.

only aware of a set of logical device streams and the

actual devices that supplied the information only of

interest to the supervisor. All input and output via the

slow peripherals was converted to (from) a standard

internal code, known as the ATLAS Internal Character

code. Every document read by file system was transferred

into this code, unless specified as binary. This

facility allowed various external representations to be

used, and the user merely informed the system what

external code had been used and the part of the

supervisor that read the documents carried out the

appropriate translation. This greatly aided making

program devices independent.

Extracode orders were provided to deal with these

logical devices: the programmer could select a logical

channel, read characters or records from it, write

characters or records to it, etc.

The user’s virtual slow peripherals were indeed very

simple to use (as easy as in high-level languages) and

that’s how they should be in all systems!

The ATLAS ONE INCH MAGNETIC TAPE SYSTEM was of a very

special type. A normal magnetic tape system allows data

to be written to or read from the tape in a serial

fashion only during one pass over the whole tape. Thus,

to update a file on such a tape, it is necessary to copy

the whole tape from start to finish incorporating the

appropriate changes in the new version. The ATLAS One

Inch Tape System was rather cleverer than this. Every

magnetic tape, before being brought into use was

initialized with blocks and block addresses. The tape

decks and their controllers were specially designed so

that the tape on the deck could be positioned at a

specified block, enabling any named block on the tape to

be accessed. This tape system, then, allowed the

initialized magnetic tapes to be used in a random

fashion, allowing the addressed block to be either read

or written. This facility allowed the updating of

individual blocks within a magnetic tape without the

need for copying the whole tape. Although random access

was possible with these tape decks, it was rarely used

as the latency time was very high perhaps as long as 3 -

4 minutes. Extracodes were provided for the users to

read and write blocks into these tapes: there were also

extracodes to title a tape and request that a tape be

mounted. These tapes were, of course, intended for

binary output. The One Inch Tape System was essential to

the

62.

operation of the ATLAS supervisor, three such decks

being needed. One was used for the system input tape,

one for the output tape (the spooling) and one for the

supervisor itself. This last unit held the most commonly

used compilers as well as the supervisor. This tape

system proved to be rather less reliable than it had

been hoped it would be and must be regarded as one of

the reasons the system never reached its predicted

performance.

63.

THE WAY THE USER USED ATLAS

Having now described each of the units of ATLAS, we

shall now think about the way the user actually used

this virtual processor, and how the supervisor went

about organising things.

With ‘hands-on’ access to a machine, the user could

simply input his program directly, then make the system

(if any) obey him by typing commands or setting hand

keys. This is also true of an interactive system. ATLAS

provided a batch service, not an interactive system,

forcing the user to supply, in addition to his program

and data, instruction as to how his job was to run.

Because ATLAS was substantially an automatic batch

system, run without operator intervention, the

instructions on how to run the job were given to the

supervisor program.

ATLAS had a fairly simple, though quite

comprehensive, job control language. The user simply

submitted his program, data and job control documents,

each on any media he desired, and his job was run. The

term “document” in ATLAS terminology had the special

meaning that it was a self-contained section of

information presented to the computer through one input

channel. For example, a collection of data on a length

of paper tape was a “document”. Each document carried at

its head a heading and a title and an end of document

mark at its tail. As each document was input, the

supervisor would put the document on a list which gave

the type of document and the place on the input tape

where it had been stored.

The document with the heading “JOB” was the document

that contained the instructions to the computer telling

how a job was to be run, and was known as the “job

description”. The line after the heading gave the title

of the document, and this was the name used by the

supervisor for that document. The job description gave

full details of all other documents needed to execute

the job, together with estimates of store and time

required. There was no concept of the “job step” (as in

OS/360 on George 3) in the ATLAS job description, only

one step could be specified per job description. This

was a disadvantage, forcing multi-step jobs to be run as

many small jobs.

The document headed “COMPILER” was known to hold the

source of a program to be compiled using the named

compiler. The heading “DATA” said that the document

following was to be used for data. Diagram 10 shows an

example of an ATLAS job.

64.

Diagram 10: An Atlas Job

JOB Heading

ABC, SMITH title

INPUT the input section of the job

description

0 ABC,PIPRO4 assigns to channel 0 the document

called ‘ABC,PIPRO4’. Channel 0 was the

conventional input for all compilers.

1 ABC,PIDATA1 assigns the document named

‘ABC,PIDATA1’ to channel 1, this would

be the data for the compiled program.

4 ABC,PIDATA2

OUTPUT output section of the job description

0 LINE PRINTER

1 EIGHT HOLE PUNCH 3 BLOCKS

COMPUTING 15000

INSTRUCTIONS

Maximum time to be allowed. This could

be specified in hours, minutes, seconds

or in ‘instruction interrupts’. One

instruction interrupt being 2048 basic

orders or so.

STORE 20/30 BLOCKS specified the maximum number of store

blocks to be allocated to the program.

20 for the object program, 30 for the

compiling process

***Z end of document

COMPILER FORTRAN what follows is a source program to be

compiled using the compiler named

FORTRAN

ABC,PIPRO4 Name of document

program↕

***Z

DATA What follows is a data document

65.

ABC,PIDATA1

data ↕

***Z

DATA

ABC,PIDATA2

 ↕

***Z

66.

A WALK THROUGH THE SUPERVISOR

Let us now consider the way the user’s job was run by

the ATLAS supervisor.

The various documents for the job were input through

the computer’s peripherals — each document could happily

be on different media — and stored away on the system

input tape by the supervisor. The supervisor recorded

the name, type and location on the input tape of each

document it received. Once all the documents for a

particular job had been read in, the job was put onto a

private list of the supervisor’s, known as the “job

list” which held jobs that could be run. Every job on

the job list was classified into one of eight groups

according to its attributes. These groups divided the

jobs principally into high priority job, tape job, short

jobs, long-non-—tape jobs and low priority jobs. The

scheduling part of the supervisor then selected jobs

from this list and put them onto “the active list”,

removing them from the job list. Once on this list, the

job control document for the job was read from the

system’s input tape and a coded form of this set up. The

supervisor then requested the operators to set up any

magnetic tapes required by the job. Communication from

the supervisor to the operators was handled over one of

the teleprinters. To communicate with the supervisor,

the operators originally had to input a message through

any one of the slow peripherals, as the machine had no

teletype-like device communications had to be carried

out by means of paper tape or cards. (A typewriter was

added to the London ATLAS during its life.) This,

however, was not as serious a drawback as it would

appear to those familiar with the IBM 360 or ICL 1900

computers. The ATLAS supervisor was a very advanced and

sophisticated piece of program and needed very little

information from the human operators, that even when

fitted, the console typewriter was of very little use.

The supervisor merely issued requests for the

operators to act upon. It would request for magnetic

tapes to be mounted, printer paper to be reloaded, etc.

You may wonder how the supervisor was told as to which

tape was mounted on which deck — well, the answer is

simply, it wasn’t! The supervisor found this information

out for itself by reading the tape number from the

magnetic tape: once the operator mounted a tape, he

pressed the ‘engage’ control which signalled the

67.

Diagram 11: The ATLAS Spooling System

Slow input device

System input tape

Slow output device

System output tape

Input well User's job Output well

68.

supervisor to identify the tape. This certainly made the

mounting of the wrong tape rather more difficult.

Once all the tapes required by the job were mounted,

the supervisor would then read the first few blocks of

each input document required by the job from the

system’s input tape into its INPUT WELL and a copy of

the required compiler was recovered from the supervisor

tape. The INPUT WELL was an area of the store where the

supervisor held buffers for each active job: in reading

data into a job, the supervisor would hand the data from

the system’s input tape into the INPUT WELL, then hand

it over from there to the program. A similar arrangement

existed for the output. Diagram 11. shows the total

arrangement of the ATLAS spooling system.

Once all the above had occurred, the job was moved

onto the “execute list”. From this list, the completely

assembled jobs were selected by part of the supervisor

known as “the execute scheduler” and multi-programmed

together. Output was written from the jobs via the

SYSTEM OUTPUT WELL onto the system’s output tape. Once

all the output for the job had been converted to hard

copy, the input and output documents were removed by the

supervisor from the system input and output tapes.

One notices at once how little human intervention

ever occurred in the processing of a job — the operators

appear only to serve some primeval god, feeding it with

information in response to its commands. The size of the

lists used in the system were kept fairly small so that

there was never more than twenty-four jobs in the

machine at once: once this limit was reached, the

machine refused to ‘eat’ any more. The restriction on

the number of jobs in the machine at the same time was

partly due to the failure of the magnetic tape system in

meeting its predicted performance, making the Input and

Output tapes less reliable than was needed.

So far, we have only mentioned the supervisor as

performing tasks. Let us just peep at the sort of beast

this remarkable piece of software was.

The supervisor controlled all the system functions

not provided directly in the hardware of the machine and

dealt with organising and running the entire machine’s

resources. It was activated in many ways — as the result

of some user program requesting a peripheral transfer,

as the result of

69.

a one-level store transfer being necessary, and as the

result of an interrupt.

The ATLAS supervisor consisted of many different

routines which were normally dormant but which could be

woken up when required. These routines were known as

Supervisor Extracode Routines (SERs). All the

supervisor’s tasks were carried out by SERs, these being

obeyed in E-state and many of them residing in the fixed

store. The SER’s not in the fixed store were held in

parts of the one-level store owned by the supervisor.

The SERs were activated as the result of some form of

supervisor request being made and their activation was

achieved via a special routine known as “the co—

ordinator”, which arranged a priority of execution for

the SERs.

Because SERs were written to be obeyed in E-state,

they could be interrupted by interrupt requests.

The supervisor was, in fact, held on the supervisor

magnetic tape with parts loaded into the one—level

store. The most used SERs were permanently set in the

fixed store. Because some programs existed permanently

in the machine, this meant that starting was relatively

simple. Once the machine had been powered up, it only

needed the relevant fixed store routine to be entered,

to load the rest of the system - this was achieved by

pressing the engineers’ interrupt control. Essentially,

this caused some basic hardware tests (also stored in

the fixed store to be executed) and then the supervisor

to be read down from tape into the store — a lot easier

than loading a bootstrap via the hand keys.

70.

A SURVEY OF THE SOFTWARE AVAILABLE ON ATLAS

Although development was initially very slow, ATLAS

eventually was well endowed with an extensive set of

compilers and utilities. In this section we shall give a

survey of some of these.

The list was long, but included the following:—

ABL

FORTRAN V

HARTRAN

ATLAS AUTOCODE

ALGOL 60

COMPILER-COMPILER

BCL

MERCURY AUTOCODE

SERVICE

EXCLF

and COPYTAPE

The ABL Compiler (ATLAS Basic Language) provided a

convenient, simple way of assembling machine code

programs. Each ABL instruction corresponded to exactly

one machine order (basic or extracode order) and each

part of the ABL order mapped exactly on to the

corresponding parts of the machine instruction. In its

simplest form, an ABL order consisted of four numbers

corresponding to each part of a machine code order, but

extensive facilities were provided for the user to use a

wide variety of symbolic expressions. A full set of

system directives were also provided to allow the

complete assembly of programs and a library of routines

was provided.

The HARTRAN compiler was the first ATLAS FORTRAN

compiler, and was developed for the Harwell ATLAS and

included many useful extensions to that language.

The FORTRAN V language was developed by Atlas

Computing Services in London and provided ever more

powerful extensions to the language than HARTRAN had.

The extensions in FORTRAN V included a block structure,

fully dynamic array, a clear statement, improved loop

and format specifications etc. FORTRAN V contained

A.S.A. FORTRAN IV as a subset and

71.

was quite compatible with IBM 6o FORTRAN and HARTRAN.

The ATLAS ALGOL 60 system provided a fairly flexible

system, allowing many different representations of ALGOL

60 to be used. Simple I/O procedures were provided and

the user had the option of selecting his routines from

libraries that were compatible with many other computers

including the KDF9 and ICL 1900 machines.

The compiler known as “COMPILER-COMPILER” was

designed by R.A. Brooker and D. Morris especially to aid

the compiler writers in writing the set of systems

compilers for ATLAS at Manchester. Compiler-Compiler

language was specially orientated towards the writing of

compilers having special facilities for recognition of

phrases and for dealing with such structures.

Compiler SERVICE was, in fact, a set of system

utilities and the “source program” for this compiler

consisted of requests for various utility tasks to be

carried out. These included tape dumping, copying, media

converts, editing, etc.

72.

The downstairs room with its false floor, the computer

finally removed and the engineers dismantling the cabling

of which there was a considerable quantity. Large pieces

of cabling had to be of a precise length so as not to

upset the timing of the computer’s operation.

73.

CONCLUSION

We have now dealt with all the notable features of

ATLAS, and the most revolutionary parts of the machine

have been discussed. The impact of these ideas has been

great on the computing world, yet still many of the

wonderful ideas used in the machine have been ignored.

ATLAS stands alone as a supreme example of close co-

operation between industry and a university and perhaps

is symbolic of Great Britain in the early 1960’s.

The London ATLAS and the Manchester ATLAS have now

both been scrapped: the Harwell machine is shortly to

follow them later this year.

ATLAS has returned, leaving the heavens to support

themselves, to its place in mythology, like its fellows,

Mercury, Sirius, Pegasus and Orion, before it.

74.

REFERENCES AND ACKNOWLEDGMEDNTS USED IN THIS BOOK

1. I.C.T. The I.C.T. ATLAS 1 Computer:

Programming Manual for ATLAS BASIC

LANGUAGE

(Jan. ‘65, List CS 348A)

2. Features and Facilities of ABL for

the ATLAS 1 computer

(June ‘65, List TL812)

3. Preparing a complete program for

ATLAS 1

(March ‘66, C5460)

4. The I.C.T. ATLAS 1 COMPUTER

The ATLAS 1 Supervisor

Operating System and Scheduling

System

(Nov. ‘66, TL1685)

(This is based on the four papers

following)

5. Kilburn, Payne and

Howarth

“The ATLAS Supervisor” from

“Computers - Key to Total Control”

published by the American

Federation of Information

Processing Societies

6. Kilburn, Howarth,

Payne and Sumner

“The Manchester ATLAS Operating

System

Part 1: Internal Organisation”

Computer Journal Vo. 4, No. 3,

1961

75.

7 Howarth, Payne and

Sumner

“The Manchester ATLAS Operating

System

Part 2: User’s Description”

Computer Journal Vo. 4, No. 5, 1961.

8 Howarth, Jones and

Wyld

 “The ATLAS Scheduling system”

Computer Journal Vo. 5, No. 5, 1962.

9. Ferranti Orion

System

Ferranti 1959, List DG 40

10. An Introduction to

the Ferranti

Mercury Computer

Ferranti, 1956, List DC 22

11. Kilburn, Edwards,

Lanigen and Sumner

“One-level Storage System”

IRE Transactions on Electronic

computers

Vol. EC-11, No. 2, April 1962.

12. University of

London ATLAS

Computing Service

FORTRAN V Manual

13. Brooker, Morris “An Assembly Program for a Phase

Structure Language”

Computer Journal Vol. 3, No. 3, 1962.

14. University of

London Institute

of Computer

Science

“Petit Bleu” Nos. 1 to 6

(an internal news letter for I.C.S.)

15. Financial Times

27th May 1964

